Loring W. Tu, An Introduction to Manifolds, Universitext, Springer, 2010.
Pedro Martínez Gadea & Jaime Muñoz Masqué, Analysis and Algebra on Differentiable Manifolds. A Workbook for Students and Teachers, Springer, 2009.
Shoshichi Kobayashi & Katsumi Nomizu, Foundations of Differential Geometry, vols. 1-2, John Wiley & Sons, 1963-69.
Peter W. Michor, Topics in Differential Geometry, Graduate Studies in Mathematics, Vol. 93, American Mathematical Society, 2008.
Ivan Kolář, Peter W. Michor & Jan Slovák, Natural Operations in Differential Geometry, Springer, 1993.
Peter W. Michor, Gauge Theory for Fiber Bundles, Extended version of a series of lectures held at the Institute of Physics of the University of Napoli, March 28—April 1, 1988.
Yvonne Choquet-Bruhat, Cécile DeWitt-Morette & Margaret Dillard Bleick, Analysis, Manifolds and Physics, Part I, II, Elsevier, 1996-2000.
John M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics, Vol. 218, Springer, 2013.
Борис А. Дубровин, Сергей П. Новиков, Анатолий Т. Фоменко, Modern Geometry - Methods and Applications, vol. 1,2,3, Graduate Texts in Mathematics, Vol. 93, 104, 124, Springer, 1984-90 (a translation of the original work Современная геометрия, Методы и приложения, Том 1, 2, 3, Наука, 1979).
Raoul Bott & Loring W. Tu, Differential Forms in Algebraic Topology, Graduate Texts in Mathematics, Vol. 82, Springer, 1982.
Nicolas Bourbaki, Éléments de mathématique. Livre II: Algèbre, chapitres 1 à 3, Springer, 2007.
Paul Moritz Cohn, Algebra. Volumes I-III, John Wiley & Sons, 1982-1991.
Serge Lang, Algebra, Springer, 2002.
Rui L. Fernandes, Lectures on Differential Geometry, World Scientific, 2024.
Werner H. Greub, Linear Algebra, Springer, 1981.
Werner H. Greub, Multilinear Algebra, Springer, 1978.
Saunders Mac Lane, Categories for the Working Mathematician, Graduate Texts in Mathematics Vol. 5, Springer, 1971.
Tom Leinster, Basic Category Theory, Cambridge Studies in Advanced Mathematics Vol. 143, Cambridge University Press, 2014.
Claude Chevalley, The Algebraic Theory of Spinors and Clifford Algebras, Collected Works of Claude Chevalley, Vol. 2, Springer-Verlag, 1996.
Pertti Lounesto, Clifford Algebras and Spinors, London Mathematical Society Lecture Notes Series, Vol. 286, Cambridge University Press, 2001.
É. Cartan, The Theory of Spinors, Dover Books on Mathematics, Dover Publications, 1981 (tłumaczenie oryginalnych notatek wykładowych ''Leçons sur la théorie des spineurs'' zebranych w 1937 r. przez A. Merciera).
H. Blaine Lawson i Marie-Louise Michelsohn, Spin Geometry, Princeton Mathematical Series, Vol. 38, Princeton University Press, 1989.
Paul Budinich i Andrzej M. Trautman, The Spinorial Chessboard, Trieste Notes in Physics, Springer-Verlag, 1988.
Stephen A. Huggett i K. Paul Tod, An Introduction to Twistor Theory, London Mathematical Society Student Texts, Vol. 4, Cambridge University Press, 1985.
Loring W. Tu, Introductory Lectures on Equivariant Cohomology, Annals of Mathematics Studies, Vol. 204, Princeton University Press, 2020.
Complementary material:
R.R.S., „Algebra. Podstawy”, skrypt do wykładu z „Algebry I i II R” (wersja przed-ostateczna, wszelkie uwagi mile widziane).
R.R.S., ,,Action directe grupy Liego'' — ucieczka z Kina Powszedniość w przestrzenie jednorodne przy użyciu Twierdzenia Cartana (o podgrupie domkniętej) i Twierdzenia o rozmaitości ilorazowej
R.R.S., Minicourse on ''Gauge symmetries and their higher analogues'' at the Bucharest 2024 Minischool ''Mathematical methods in Gravitation and Cosmology'', November 13-17, 2024, București–Magurele, România: Abstract, Lecture I, Lecture II, Lecture III, Tutorial