
A BUNDLE OF FACTS ABOUT BUNDLES:
FIBRATIONS, TRIVIALISATIONS,

SECTIONS, SHEAVES & RECONSTRUCTIONS
(DDD ’24/25 V [RRS])

Figure 1. McCormick’s sheaf-binder, an adaptation of John F. Appleby’s inven-
tion of 1858, which revolutionised the harvesting process in Northern America at
the end of the XIX century by substantially increasing its fficiency (an ad from
1884).
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1. General structures

In what follows, we review a (smooth) model of the configuration space of a field theory,
combining the constituent elements of the phenomenological concept: a spacetime Σ and a space
of internal degrees of freedom F (a vector space, an algebra module, a group torsor, a manifold
endowed with a group action etc.) attached to each of its points into a single geometric object,
which captures the underlying ideas:

● of an identification, over each point of the spacetime, of the globally fixed type F of a
physical species inhabiting Σ, leading to a local model O × F of the configuration space
over the laboratory floor O ∈ T (Σ) (T (Σ) is a topology of Σ);
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● of an invertible (and smoothly so, in the present smooth paradigm) transcription law
for any pair Oi × F, i ∈ {1,2}} of local (laboratory) models of the configuration space
over their nonempty spacetime intersection O1 ∩O2 ≠ ∅, ensuring objectivisation of local
measurements of phenomena involving the physical species modelled by that configuration
space;
● of a local field profile ϕ ∈ C∞(O,F ), representing an assignment of the internal degrees of

freedom to each point in O.
The model is provided by
Definition 1. A fibre bundle is a quadruple

(E,B,F, πE)
composed of smooth manifolds

● E, termed the total space;
● B, termed the base;
● F , termed the typical fibre ,

and a smooth surjection

πE ∶ E Ð→ B ,

termed the base projection, for which there exists an open cover OB = {Oi}i∈I of the base B
together with the corresponding family of diffeomorphisms

τi ∶ π−1E (Oi)
≅ÐÐ→ Oi × F ,

termed local trivialisations. The latter are assumed to compose the following commutative
diagrams (for every i ∈ I)

π−1E (Oi)
τi //

πE

��

Oi × F

pr1

��
Oi

,

and give rise to maps

gij ∶ Oij Ð→ Aut(F )
determined, for every pair (i, j) ∈ I×2 such that Oij ≡ Oi ∩Oj ≠ ∅ and some subgroup Aut(F ) ⊆
Diff(F,F ) of automorphisms1 of the typical fibre, by the composition of diffeomorphisms

τij ∶= τi ○ τ−1j ↾Oij×F ∶ Oij × F ↺ ∶ (x, f) z→ (x, gij(x)(f)) ,
with Oij × F Ð→ F ∶ (x, f) z→ gij(x)(f) smooth. A cover with the above property is termed
trivialising for E, and the gij are termed transition maps. Their common codomain Aut(F )
is called the structure group of E.

We shall represent a fibre bundle by the following diagram

F
� � // E

πE

��
B

,

in which the special ontological status (non-canonicity) of the embedding of the typical fibre in
the total space is signalled by the wiggly arrow.

1A choice of a proper subgroup Aut(F ) ⊊ Diff(F,F ) is often eployed to encode the existence of an extra structure
on the typical fibre, preserved by Aut(F ). Examples of such structures include: a linear structure (Aut(F ) ⊂
GL(F )), an action of a group G (Aut(F ) ⊂ DiffG(F )), a metric structure (Aut(F ) ⊂ Isom(F, g)), etc.
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The preimage of a point x ∈ B along the base projection,

π−1E ({x}) ≡ Ex

is termed the fibre of E over x.
A subbundle of a given bundle (E,B,F, πE) is a fibre bundle (S,B,X,πS) with a total space

S embedded in E and πS = πE↾S .
A morphism between fibre bundles (Eα,Bα, Fα, πEα), α ∈ {1,2} (aka a bundle map) is a

pair (Φ, f) of smooth maps which render the following diagram commutative:

E1
Φ //

πE1

��

E2

πE2

��
B1

f
// B2

.

Example 1. (1) A trivial bundle is a quadruple represented by the diagram

F
� � // B × F

pr1

��
B

,

e.g., the 2-torus T2 ≡ S1 × S1 Ð→ S1, or the cylinder S1 ×RÐ→ S1.
(2) The Möbius band as a nontrivial bundle over S1 with typical fibre R.
(3) The Hopf fibration (S3,S2,S1, h), with the base projection πH readily expressible

in the global coordinates (z1, z2) ≡ ((x0, x1), (x2, x3)) on the ambient C×2 ≡ R×4 ⊃
{ (x0, x1, x2, x3) ∈ R×4 ∣ x2

0 + x2
1 + x2

2 + x2
3 = 1 } ≡ S3 as πH(z1, z2) = (2z1z2, ∣z1∣2 − ∣z2∣2) ∈

S2 ⊂ R×3.
(4) Let (E,B2, F, πE) be a fibre bundle with local trivialisations τi ∶ π−1E (Oi)

≅ÐÐ→ Oi × F
over a trivialising cover OB2 = {Oi}i∈I of the base B2, and let f ∶ B1 Ð→ B2 be a smooth
map. The quadruple

(f∗E ≡ B1 ×B2 E,B1, F,pr1) ,
is a fibre bundle, termed the pullback bundle, with
● total space given by the fibred product2

B1 ×B2 E

pr1

��

pr2 // E

πE

��
B1

f
// B2

,

endowed with a subspace topology, which is induced from the product topology on
B1 ×E ⊃ B1 ×B2 E;
● base projection πf∗E ≡ pr1↾B1×B2

E ∶ B1 ×B2 E Ð→ B1 given as the (suitably re-
stricted, and manifestly surjective) canonical projection to the first cartesian compo-
nent;
● typical fibre identical with the typical fibre of E and the fibre over a point x ∈ B1

in the base given by {x} × π−1E ({f(x)}) ≡ Ef(x);
● local trivialisations

τf
∗

i ∶= (idf−1(Oi) × (pr2 ○ τi))↾pr−11 (f−1(Oi)) ∶ pr
−1
1 (f−1(Oi))

≅ÐÐ→ f−1(Oi) × F

2See [Sus23].
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associated with the (pullback) trivialising cover f∗OB2 ≡ {f−1(Oi)}i∈I (its openness
follows from continuity of f).

The trivialisations are, clearly, well defined in virtue of the identities

pr1↾−1B1×B2
E(f−1(Oi)) = pr2↾−1B1×B2

E(π−1E (Oi)) ≡ pr−12 (τ−1i (Oi × F )) ,
implied by the commutativity of the above diagram. Moreover, the smoothness of the
structure maps: πf∗E and τf

∗
i follows from the submersivity of πE . Upon denoting ιf∗ ∶

B1 ×B2 E ↪ B1 ×E, we may write the maps as superpositions of smooth mappings

πf∗E ≡ pr1 ○ ιf∗ , τf
∗

i ≡ (idf−1(Oi) × (pr2 ○ τi)) ○ ιf∗↾pr−11 (f−1(Oi)) .

We readily derive the corresponding transition maps of the pullback bundle in the form:

gf
∗

ij ≡ gij ○ f↾f−1(Oij) ∶ f−1(Oij) Ð→ Aut(F ) .
A moment’s thought on the diffeomorphic model of the fibre bundle in a local trivialisation leads
to the conclusion that the base projection is a surjective submersion. A simple yet physically
signicant consequence of this fact is captured by
Theorem 1. Let MA, A ∈ {1,2} be smooth manifolds, and let the smooth map f ∶ M1 Ð→M2

be submersive at x ∈M1. There exists a neighbourhood Of(x) ⊂M2 of the point f(x), on which
we find a well-defined smooth map σ ∶ Of(x) Ð→M1 with the following properties

f ○ σ = idOf(x) ∧ σ ○ f(x) = x .(1)

The map is termed a local section of f through x.

Proof: The statement is of a local character, and so we may restrict our considerations to a neigh-

bourhood Ox ∋ x which supports a local coordinate chart κ1 ∶ Ox
≅ÐÐ→ U1, U1 ∈ T (R×n1), n1 ≡

dimM1 such that κ1(x) = 0, and to a neighbourhood Õf(x) ∋ f(x) which supports a local co-
ordinate chart κ2 ∶ Õf(x)

≅ÐÐ→ U2, U2 ∈ T (R×n2), n2 ≡ dimM2 such that κ2 ○ f(x) = 0. The
submersivity of f at x implies that the tangent map

Tκ(x)=0(κ2 ○ f ○ κ−11 ) ∶ Tκ1(x)=0R
×n1 ≡ R×n1 Ð→ Tκ2○f(x)=0R

×n2 ≡ R×n2

is an epimorphism between the R-linear spaces. Let V1 ⊂ R×n1 be an arbitrary subspace mapped
isomorphically to R×n2 by (the restriction of) Tκ(x)(κ2○f ○κ−11 ). Then, the tangent of the smooth
map

F ∶= κ2 ○ f ○ κ−11 ↾U1∩V1
∶ U1 ∩ V1 Ð→ U2 ⊂ R×n2 ,

with a manifestly nonempty domain (note that V1 is a subspace in R×n1 , and U1 is a neighbour-
hood of the zero vector), is invertible. Indeed, in virtue of the identity T0V1 ≡ V1, the domain of
T0F takes the form T0 U1 ∩T0V1 ≡ R×n1 ∩ V1 = V1, which means that T0F is an isomorphism

T0F ≡ T0(κ2 ○ f ○ κ−11 )∣V1 .

Invoking the Inverse-Function Theorem, we infer that F ≡ κ2 ○ f ○ κ−11 ↾U1∩V1
admits a desired

(smooth) inverse κ1 ○ σ ○ κ−12 ↾F (U0) on a certain neighbourhood U0 ⊂ F (U1 ∩ V1) of the vector
0 ≡ κ2 ○ f(x). The homeomorphic preimage κ−12 (U0) of the latter can be chosen as the postulated
neighbourhood of f(x), on which there exists a smooth local section σ. □

Submersions enjoy a status in the smooth category akin to that of universal objects studied
in the elementary course on (linear) algebra. This is illustrated in
Theorem 2 (Quasi-universality3 of submersions). Let f ∶ M1 Ð→M2 be a (smooth) surjective
submersion. Furthermore, let N be a smooth manifold, and let F̌ ∶ M2 Ð→ N be an arbitrary
map. The latter is smooth iff the composite map F̌ ○ f ∶ M1 Ð→ N has this property. In

3The reason why the standard notion of universality is qualified by the prefix ‘quasi-’ is that the class of objects
for which a pair (M2, f) plays the rôle of an initial object is defined in terms of the map f itself (through the
condition of constancy on the fibres of the latter).
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particular, to every smooth map F ∶ M1 Ð→ N constant on fibres of f , there corresponds
a unique F̌ ∈ C∞(M2,N) with a property expressed—in conjunction with the said property of
f —by the commutative diagram

M1 ×M2 M1

pr1

{{

pr2

##
M1

f
$$

F

$$

M1

f
zz

F

zz

M2

F̌

��
N

.

Proof: Whenever F̌ is smooth, so is F̌ ○ f as a superposition of smooth maps.
Conversely, let F̌ ○ f ∈ C∞(M1,N). Due to surjectivity of f , an arbitrary point in M2 can be

written as f(x) for some x ∈ M1. Pick up a point f(x) ∈ M2 together with its neighbourhood
Of(x) ⊂M2 such that there exists a local section σ ∶ Of(x) Ð→M1 of the map f , satisfying (1).
We then obtain, in the notation of the proof of Thm. 1, the following identity:

F̌ ↾Of(x) ≡ F̌ ○ idOf(x) = (F̌ ○ f) ○ σ ,

which ensures smoothness of F̌ ↾Of(x) in consequence of the assumed smoothness of F̌ ○f and the
same property of the local section σ, stated in Thm. 1. The arbitrariness of our choice of f(x)
implies global smoothness of F̌ .

Finally, let us address the question of existence and uniqueness of a map F̌ ∈ C∞(M2,N),
assumed to obey

F = F̌ ○ f .
First of all, note that any two such maps coincide on the set f(M1), which is the same as M2 by
surjectivity of f . Hence, there is at most one map F . Invoking surjectivity of f once more, we
postulate F in the manifestly smooth form

F̌ ∶ M2 Ð→ N ∶ f(x) z→ F ○ σ(f(x)) ≡ F (x) ,
in which σ is an arbitrary section as in Thm. 1. That the definition makes sense is ensured by
the assumed constancy of F on fibres of f —indeed, F (x) does not depend on the choice of a
representative of the fibre f−1({f(x)}), i.e., it does not depend on the choice of a section σ, whose
existence is guaranteed by the theorem). The desired identity

F̌ ○ f(x) = F (x)
now follows by definition. □

When referred to the base projection of a fibre bundle, the above analysis of elementary properties
of surjective submersions leads us to distinguish certain sets of mappings, indicated in
Remark 1. The set of local sections of a fibre bundle (E,B,F, πE) is denoted as

Γloc(E) ,
whereas the set of its global sections is denoted as

Γ(E) .
Definition 1 provides us with just the desired rigorous geometric rendering of the nebular phys-

ical concept of a smooth distribution, over a given spacetime B, of internal degrees of freedom F
(amenable to further structurisation). The existence of local trivialisations paves the way towards
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encoding the information about the structure of the bundle in the locally smooth transition maps
gij . Exactly how rich and comprehensive that information is, we state in
Theorem 3 (The Clutching Theorem). Transition maps of a fibre bundle (E,B,F, πE) with a
trivialising cover OB = {Oi}i∈I of its base B satisfy the 1-cocycle condition

∀i,j,k∈I, x∈Oijk
∶ gij(x) ○ gkj(x)−1 ○ gki(x) = idF .(2)

Conversely, let OB = {Oi}i∈I be an open cover of a smooth manifold B, and let F be an arbitrary
smooth manifold with an automorphism group Aut(F ) ⊆ Diff∞(F ) (see previous remarks). An
arbitrary family of maps

gij ∶ Oij Ð→ Aut(F ) , i, j ∈ I
inducing smooth maps

Oij × F Ð→ F ∶ (x, f) z→ gij(x)(f)
and satisfying the above condition determines a fibre bundle with transition maps, associated
with OB , given by the gij . Whenever these latter maps come from a fibre bundle over B (as its
transition maps), the induced bundle is (canonically) isomorphic with the original (inducing) one.

Proof: The first part of the theorem is a direct consequence of the following equality, true for
every triple (i, j, k) ∈ ⟨I×3⟩ and (x, f) ∈ Oijk × F :

(x, f) ≡ (idOijk
× idF )(x, f) = ((τi ○ τ−1j ) ○ (τk ○ τ−1j )−1 ○ (τk ○ τ−1i ))(x, f)

= (x, gij(x) ○ gkj(x)−1 ○ gki(x)(f)) .
The point of departure of the second part is the construction of the disjoint union ⊔i∈I (Oi×F )

(in the catregory of sets), on which we define a relation

(x, f, i) ∼g⋅⋅ (y, g, j) ⇐⇒ { y = x ∈ Oij

g = gji(x)(f)
,

The 1-cocycle condition satisfied by the transition maps implies that this is an equivalence relation.
Indeed, for i = j = k, we obtain

gii(x) ≡ gii(x) ○ gii(x)−1 ○ gii(x) = idF ,

and so ∼g⋅⋅ is reflexive. , This further results in skew symmetry of the gij ,

gji(x) ○ gij(x) = gji(x) ○ gii(x)−1 ○ gij(x) = idF ,

which translates into symmetricity of ∼g⋅⋅ . iFinally, a suitably rewriting of the 1-cocycle condition:

gij(x) ○ gjk(x) = gij(x) ○ gkj(x)−1 = gki(x)−1 = gik(x) ,
demonstrates its transitivity. Therefore, we may pass from ⊔i∈I (Oi ×F ) to the set of equivalence
classes

Rg⋅,⋅ ∶= (⊔
i∈I
(Oi × F ))/g⋅⋅ ,

on which we define a map

πRg⋅,⋅ ∶ Rg⋅,⋅ ↠ B ∶ [(x, f, i)]∼g⋅⋅ z→ x .

Note that every class [(x, f, i)]∼g⋅⋅ contains exactly one representative with a given index, (x, f, i) ∈
Oi × F × {i}, because—by definition—

(y, g, i) ∈ [(x, f, i)]∼g⋅⋅ Ô⇒ (y, g) = (x, gii(x)(f)) = (x, idF (f)) = (x, f) .
Since, furthermore,

∀(x,f)∈Oi×F ∶ (x, f, i) ∈ [(x, f, i)]∼g⋅⋅ ,
we establish a bijection

[τi] ∶ π−1Rg⋅,⋅
(Oi)

≅ÐÐ→ Oi × F ∶ [(x, f, i)]∼g⋅⋅ z→ (x, f) .
6
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In the next step, we endow Rg⋅,⋅ with the quotient topology, declaring as open an arbitrary subset
O ⊂Rg⋅,⋅ whose preimage along the (canonical) projection

π∼ ∶ ⊔
i∈I
(Oi × F ) Ð→Rg⋅,⋅(3)

is open in R̃g⋅,⋅ in the disjoint-sum topology4 of the spaces Oi ×F, i ∈ I, each of which carries the
usual product topology. In the said quotient topology, the bijections [τi] are homeomorphisms, and
the projection πRg⋅,⋅ is continuous (tautologically). The topology is hausdorff. Indeed, whenever
[(x1, f1, i1)]∼g⋅⋅ ≠ [(x2, f2, i2)]∼g⋅⋅ , we encounter a disjunction: Either x2 ≠ x1, in which case we
separate points x1 and x2 by taking the respective opens O1 ⊂ Oi1 and O2 ⊂ Oi2 in the hausdorff
(by assumption) base B, whereupon we take manifestly disjoint neighbourhoods π∼(Oα × F ×
{iα}), α ∈ {1,2} of the corresponding two classes in Rg⋅,⋅ (π∼ identifies points in the fibre over
a point in the base!), or x2 = x1 with i2 = i1 (the equality x2 = x1 makes it possible for us to
choosec i2 = i1, potentially at the expense of changing f2), and so we may separate points f1 and
f2 by putting them in the respective opens U1 and U2 in the hausdorff (also by assumption) fibre
F , whereupon we form disjoint (open) neighbourhoods π∼(Oi1 × Uα × {i1}), α ∈ {1,2} of the two
classes Rg⋅,⋅ (this time round, (nontrivial) identifications only pertain to points in ⊔i∈I (Oi × F )
with (cover) indices different from i1).

At this stage, we may construct an atlas on the topological space defined above. To this end,
we fix atlases on the Oi through restriction of an arbitrary atlas on the base B. In this way,
we obtain local (coordinate) charts ξi,A ∶ Oi,A

≅ÐÐ→ Ui,A, A ∈ Ji on subsets Oi,A ∈ T (Oi) (in
subspace topology) modelled on the respective Ui,A ∈ T (R×n), n = dimB, alongside an atlas on
the typical fibre ζα ∶ Vα

≅ÐÐ→ Wα, α ∈ K with subsets Vα ∈ T (F ) modelled on the respective
Wα ∈ T (R×m), m = dimF . We then define an atlas on Rg⋅,⋅ as the set of local charts

κi,A,α ∶ Qi,A,α ≡ π∼(Oi,A × Vα)
≅ÐÐ→ Ui,A ×Wα ⊂ R×n+m

∶ [(x, f, i)]∼g⋅⋅ z→ (ξi,A(x), ζα(f)) ,
which are well-defined as—in the light of our fomer conclusions—there exists, for each class
[(x, f, i)]∼g⋅⋅ , a unique representative (x, f) ∈ Oi,A × Vα ⊂ Oi × F with a fixed index i ∈ I. In
the intersection of their domains, we find coordinate transformations

κi,A,α j,B,β ≡ κi,A,α ○ κ−1j,B,β ∶ κj,B,β(Oi,A j,B × Vαβ)
≅ÐÐ→ κi,A,α(Oi,A j,B × Vαβ)

∶ (ξj,B(x), ζβ(f)) z→ (ξi,A(x), ζα ○ gij(x)(f))

≡ (ξi,A ○ ξ−1j,B(ξj,B(x)), ζα ○ (gij ○ ξ−1j,B)(ξj,B(x)) ○ ζ−1β (ζβ(f))) .
Bearing in mind that the ξi,A ○ ξ−1j,B are coordinate transformations of the (refined) atlas on B,
smooth by assumption, and that the gij ○ ξ−1j,B are local presentations of transition maps, likewise
smooth by assumption (in the previously considered sense), and—finally—that the ζα○gij(x)○ζ−1β

are local (coordinate) presentations of the automorphisms gij(x) of the fibre F , also smooth by
assumption, we conclude that the transformations κi,A,α j,B,β are smooth. Hence, the local charts
κi,A,α endow Rg⋅,⋅ with the structure of a smooth manifold. Relative to it, the maps [τi] are
(tautologically) diffeomorphisms (as is the base projection πRg⋅,⋅ ↾Qi,A,α

≡ pr1 ○ [τi]), and so they
induce on Rg⋅,⋅ the structure of a fibre bundle.

We complete the proof by demonstrating the equivalence of the two structures of a fibre bundle:
the one on a given fibre bundle (E,B,F, πE), with local trivialisations τi ∶ π−1E (OI)

≅ÐÐ→ Oi×F, i ∈
I, and the onre obtained through the above reconstruction from the latter’s transition maps gij .
For that, we consider the local mappings

ιi ∶= [τi]−1 ○ τi ∶ π−1E (Oi)
≅ÐÐ→ Oi × F

≅ÐÐ→ π−1Rg⋅,⋅
(Oi) , i ∈ I .(4)

4The standard topology on a disjoint sum is composed of sets whose preimages along all canonical injections
Oj × F Ð→ ⊔i∈I (Oi × F ) are open.
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Note that these local diffeomorphisms satisfy, at every point y ∈ π−1E (Oij), corresponding to some
x ∈ Oij and f ∈ F through the formula y = τ−1i (x, f), the relation

ιj(y) ≡ ιj(τ−1i (x, f)) ≡ [τj]−1 ○ τj ○ τ−1i (x, f) = [τj]−1(x, gji(x)(f)) = [τi]−1 ○ [τi] ○ [τj]−1(x, gji(x)(f))

= [τi]−1(x, gij(x) ○ gji(x)(f)) = [τi]−1(x, f) ≡ [τi]−1 ○ τi ○ τ−1i (x, f) ≡ ιi(y) ,

and so they are restrictions of a global diffeomorphism

ι ∶ E ≅ÐÐ→Rg⋅,⋅ ,

given by

ι↾π−1
E
(Oi) = ιi .

The diffeomorphism fits into the commutative diagram

E //
ι //

πE

��

Rg⋅,⋅

πRg⋅,⋅

��
B

idB

B

,

which permits us to identify ι as the postulated bundle isomorphism. □

2. The canonical example, and an abstraction

A geometrically natural—even canonical (in the sense of it being fully determined by the smooth
structure on its base)—example of a fibre bundle is the tangent bundle over a given smooth
manifold (M, Â ). There exist several equivalent definitions of this bundle, each emphasising a
different structural property. Below, we recall one of them, which bases on the fundamental theorem
just proved.
Definition 2. Let (M, Â ) be a smooth manifold of dimension n ∈ N×, with atlas Â = {κi}i∈I
associated with an open cover OM = {Oi}i∈I . The tangent bundle over M is the smooth manifold
(TM,TÂ ) constructed as follows:

- the underlying set is that of equivalence classes

TM ∶= (⊔
i∈I

Oi ×R×n)/ ∼Dt⋅⋅

of the relation

(x, v, i) ∼ (y,w, j) ⇐⇒ { y = x ∈ Oij

w = D(κj ○ κ−1i )(κi(x))(v) ≡ Dtji(κi(x))(v)
,

which comes together with the map

πTM ∶ TM Ð→M ∶ [(x, v, i)]∼Dt⋅⋅ z→ x ,

called the canonical projection (on the base of the tangent bundle), whose level
set

TxM ∶= π−1TM({x})

carries the name of the tangent space at point x;
- the topology of the set TM is the quotient one, induced along the surjective projection

π∼ ∶ ⊔
i∈I

Oi ×R×n Ð→ (⊔
i∈I

Oi ×R×n)/ ∼Dt⋅⋅ ∶ (x, v, i) z→ [(x, v, i)]∼Dt⋅⋅
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from the disjoint-sum topology for the family of spaces Oi × R×n indexed by I, with
canonical injections

ȷi ∶ Oi ×R×n Ð→ ⊔
j∈I

Oj ×R×n ∶ (x, v) z→ (x, v, i) , i ∈ I ,

whose domains carry product topology

T (TM) ∶= { O ⊂ TM ∣ ∀i∈I ∶ ȷ−1i (π−1∼ (O)) ∈ T (Oi ×R×n)} ;
- the smooth structure on the above topological space TM is defined by the (manifestly

homeomorphic) maps

Tκi ∶ π−1TM(Oi)
≅ÐÐ→ Ui ×R×n ∶ [(x, v, i)]∼Dt⋅⋅ z→ (κi(x), v) , i ∈ I ,

also known as natural charts (coefficients of the decomposition of a vector v in a basis
(chosen arbitrarily) are promoted to the rank of global coordinates on R×n), which, in
turn, determine coordinate transformations

Ttji ∶= Tκj ○ (Tκi)−1↾κi(Oij)×R×n ∶ κi(Oij) ×R×n
≅ÐÐ→ κj(Oij) ×R×n

∶ (κi(x), v) z→ (κj(x),Dtji(κi(x))(v)) ,
obviously lower by one in the degree of smoothness with respect to those of the underlying
manifold M , that is still ∞− 1 = ∞ in our case—thus, we are dealing here with a smooth
action of the structure group GL(R×n;R) ∋ Dtji(κi(x)).

The equivalence class

V (x) ∶= [(x, v, i)]∼Dt⋅⋅ ∈ TxM(5)

is called a tangent vector on (M, Â ) (attached) at point x ∈M .
The (smooth) map

0TM ∶ M Ð→ TM ∶ xz→ [(x,0n, i)]∼Dt⋅⋅

is referred to as the zero section of the tangent bundle TM .
A linear structure, which we anticipate in a model of the “space of infinitesimal motions” or “space
of velocities”, is camouflaged in our definition as the judicious choice of the local model of the
typical fibre R×dimM , with a natural interpretation in terms of local coordinates.
Proposition 1. For every pointt x ∈ Oi ⊂M in a smooth manifold (M, Â ) of dimension n ∈ N×,
the map

Txκi ∶ TxM
TκiÐÐÐ→ Ui ×R×n

pr2ÐÐÐ→ R×n

∶ [(x, v, i)]∼Dt⋅⋅ z→ (κi(x), v) z→ v ,

given as the supersposition of a local (natural) chart on TM with the canonical projection onto
the second component of the cartesian product, is a bijection and, as such, canonically induces on
TxM the structure of an R-linear space,

TxM ≅
R−lin.

R×n ,

termed the tangent space of M at x.

Proof: The R-linear structure referred to in the statement of the proposition is determined by the
formula

λ1 ⊳ [(x, v1, i)]∼Dt⋅⋅ + λ2 ⊳ [(x, v2, i)]∼Dt⋅⋅ ∶= [(x,λ1 ⊳ v1 + λ2 ⊳ v2, i)]∼Dt⋅⋅ ,

written for arbitrary λ1, λ2 ∈ R. Owing to the R-linear character of the equivalence relation in
Def. 2, this structure is well-defined. Indeed, let x ∈ Oij and let wα ∶= Dtji(κi(x))(vα), α ∈ {1,2},
to obtain

λ1 ⊳ [(x,w1, j)]∼Dt⋅⋅ + λ2 ⊳ [(x,w2, j)]∼Dt⋅⋅ = [(x,λ1 ⊳ w1 + λ2 ⊳ w2, j)]∼Dt⋅⋅
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= [(x,λ1 ⊳ Dtji(κi(x))(v1) + λ2 ⊳ Dtji(κi(x))(v2), j)]∼Dt⋅⋅

= [(x,Dtji(κi(x))(λ1 ⊳ v1 + λ2 ⊳ v2), j)]∼ = [(x,λ1 ⊳ v1 + λ2 ⊳ v2, i)]∼Dt⋅⋅

≡ λ1 ⊳ [(x, v1, i)]∼Dt⋅⋅ + λ2 ⊳ [(x, v2, i)]∼Dt⋅⋅ .

□

From the above, we abstract a notion of a bundle with an additional linear structure on the
typical fibre, which is ‘propagated’ coherently (in particular, smoothly) over the base. This we
give in

Definition 3. Let n ∈ N and consider the field K ∈ {R,C} with the standard (euclidean) topology
and smooth structure. A (smooth) vector bundle of rank r over field K is a fibre bundle
(V,B,K×r, πV) with the following properties:

● ∀x∈B ∶ Vx ≡ π−1V ({x}) ∈ ObVect
(<∞)
K ;

● restrictions of the diffeomorphisms (local trivialisations)

pr2 ○ τi↾Vx
∶ Vx

≅ÐÐ→ K×r , x ∈ B

are K-linear isomorphisms ,

with the maps that define the K-linear structure on fibres of V smooth over B. By the latter, we
mean that there exist maps:

● a smooth map

A ∶ V ×B VÐ→ V(6)

modelled on the defining binary operation Ar ∶ K×r ×K×r Ð→ K×r in the sense expressed
by the commutative diagram

π−1V (Oi) ×B π−1V (Oi) A //

τi×τi

��

π−1V (Oi)

τi

��
(Oi ×K×r) ×Oi

(Oi ×K×r) (pr1,A
r○pr2,4)

// Oi ×K×r

;(7)

● a family of diffeomorphisms:

K× Ð→ Diffk(V) ∶ λz→ Lλ(8)

with K-linear restrictions to fibres, augmented by the K-linear map L0K , modelled on the
defining action ℓr ∶ K×K×r Ð→ K×r in the sense expressed by the commutative diagram

π−1V (Oi)
Lλ //

τi

��

π−1V (Oi)

τi

��
Oi ×K×r

ℓrλ

// Oi ×K×r

.(9)

If K = R, we speak of a real vector bundle, whereas for K = C, we have a complex vector
bundle.
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The rank of the vector bundle is denoted as rkV. Whenever rkV = 1, we call V a line bundle,
and customarily denote it as L,

K �
� // L

πL

��
B

.

The smooth map

0V ∶ B Ð→ V ∶ xz→ τ−1i (x,0r) , x ∈ Oi ,

is termed the zero section of V. It is a global section of V in the sense of Remark 1. It is also
to be noted that Γ(V) carries a (pointwise) structure of a module over the ring C∞(B,K).

A vector subbundle of rank s ≤ r in a vector bundle (V,B,K×r, πV) is a subbundlea (W,B,
K×s, πV↾W) of that fibre bundle with the following property: over every point x ∈ B of the base,
the fibre Wx ⊂ Vx is a K-linear subspace of Vx.

A morphism of vector bundlesh (over field K) (Vα,Bα,K×rα , πVα), rα ∈ N, α ∈ {1,2} is
a bundle map

(Φ, f) ∶ (V1,B1,K×r1 , πV1) Ð→ (V2,B2,K×r2 , πV2) ,
with K-linear restrictions

Φ↾V1x
∶ V1x Ð→ V2f(x) .(10)

The rank of (Φ, f) is the map

rk (Φ, f) ∶ B1 Ð→ N ∶ xz→ rk (Φ↾V1x
) .
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