A BUNDLE OF FACTS ABOUT BUNDLES:
FIBRATIONS, TRIVIALISATIONS,
SECTIONS, SHEAVES & RECONSTRUCTIONS
(DDD °24/25 V [RRS])

FI1GURE 1. McCormick’s sheaf-binder, an adaptation of John F. Appleby’s inven-
tion of 1858, which revolutionised the harvesting process in Northern America at
the end of the XIX century by substantially increasing its fficiency (an ad from

1884).
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1. GENERAL STRUCTURES

In what follows, we review a (smooth) model of the configuration space of a field theory,
combining the constituent elements of the phenomenological concept: a spacetime ¥ and a space
of internal degrees of freedom F (a vector space, an algebra module, a group torsor, a manifold
endowed with a group action etc.) attached to each of its points into a single geometric object,
which captures the underlying ideas:

e of an identification, over each point of the spacetime, of the globally fixed type F of a
physical species inhabiting 3., leading to a local model O x F' of the configuration space
over the laboratory floor O € 7 (%) (7 (X) is a topology of X);
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e of an invertible (and smoothly so, in the present smooth paradigm) transcription law
for any pair O; x F, i € {1,2}} of local (laboratory) models of the configuration space
over their nonempty spacetime intersection O n Oy # &, ensuring objectivisation of local
measurements of phenomena involving the physical species modelled by that configuration
space;

e of a local field profile ¢ € C*°(O, F), representing an assignment of the internal degrees of
freedom to each point in O.

The model is provided by
Definition 1. A fibre bundle is a quadruple

(E7 Bv Fa 7TE)
composed of smooth manifolds
e F. termed the total space;
e B, termed the base;
e [ termed the typical fibre,
and a smooth surjection
g : BF— B,

termed the base projection, for which there exists an open cover Op = {O;}4s of the base B
together with the corresponding family of diffeomorphisms

Ti ﬂ'El(Oi)i)OiXF,

termed local trivialisations. The latter are assumed to compose the following commutative
diagrams (for every i€ I)

7:1(0;) i O; x F

0;
and give rise to maps

determined, for every pair (i,j) € I*? such that O;; =0; nO; # @ and some subgroup Aut(F) c
Diff (F, F) of automorphismsﬂ of the typical fibre, by the composition of diffeomorphisms

Tij = Tioijeriij . Ol-j xFO: (z,f)— (m,gij(x)(f))7

with O;; x F — F : (z,f) = g;j(x)(f) smooth. A cover with the above property is termed
trivialising for F, and the g;; are termed transition maps. Their common codomain Aut(F’)
is called the structure group of F.

We shall represent a fibre bundle by the following diagram

Fos E
71'E7

B

in which the special ontological status (non-canonicity) of the embedding of the typical fibre in
the total space is signalled by the wiggly arrow.

LA choice of a proper subgroup Aut(F') ¢ Diff (F, F') is often eployed to encode the existence of an extra structure
on the typical fibre, preserved by Aut(F'). Examples of such structures include: a linear structure (Aut(F) c
GL(F)), an action of a group G (Aut(F) c Diffg(F')), a metric structure (Aut(F') c Isom(F,g)), etc.
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The preimage of a point x € B along the base projection,

e ({2}) = E,
is termed the fibre of E over z.
A subbundle of a given bundle (E, B, F,7g) is a fibre bundle (S, B, X,mg) with a total space
S embedded in E and wg =7glg-
A morphism between fibre bundles (E,, By, Fo,7g,), a € {1,2} (aka a bundle map) is a
pair (@, f) of smooth maps which render the following diagram commutative:

[}
B— - p
TE, TEy
By By

Example 1. (1) A trivial bundle is a quadruple represented by the diagram
Fo~~sBxF

lprl y

B

e.g., the 2-torus T? =S x S' — S, or the cylinder S! xR — S*.

(2) The Mébius band as a nontrivial bundle over S' with typical fibre R.

(3) The Hopf fibration (S3 S?,S! k), with the base projection 7y readily expressible
in the global coordinates (z1,22) = ((x0,21),(22,23)) on the ambient C*? = R** >
{ (zo,71,79,23) e R** | 22 + 23 + 25+ 23 =1 } =S% as 7u(21,22) = (22122, |21 - |22]?) €
S2 c RXS. 5

(4) Let (E,Ba, F,mg) be a fibre bundle with local trivialisations 7; : 75 (0;) — O; x F
over a trivialising cover Op, = {O;};cr of the base By, and let f : B; — By be a smooth
map. The quadruple

(f*EE By X By E3B17F7pr1)7

is a fibre bundle, termed the pullback bundle, with
e total space given by the fibred productﬂ

pry

By xp, E E
pry T™E ,
By 7 By

endowed with a subspace topology, which is induced from the product topology on
By x E> DB X32E§

e base projection mp+g = pry |‘BIX52E : By xp, E — Bj given as the (suitably re-
stricted, and manifestly surjective) canonical projection to the first cartesian compo-
nent;

e typical fibre identical with the typical fibre of E and the fibre over a point x € By
in the base given by {z} x 7' ({f(2)}) = Ef);

o local trivialisations

7 = (idga(0 % (Pry o 7)) ) pri(£71(00) — 110 < F

et (51 (00)

2See [Sus23).
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associated with the (pullback) trivialising cover f*Op, = {f™(O;)}icr (its openness
follows from continuity of f).
The trivialisations are, clearly, well defined in virtue of the identities

prqf le32 (f (O; )) prof le32 (WEI(Oi)) Epril(Tfl(Oi X F)),
implied by the commutativity of the above diagram. Moreover, the smoothness of the

structure maps: m¢+p and Tif " follows from the submersivity of mg. Upon denoting ¢+ :
By xp, E - By x E, we may write the maps as superpositions of smooth mappings
o = " I = (id . "
TP =PIy oLy i = (g0 x (przem)) e ept (0,

We readily derive the corresponding transition maps of the pullback bundle in the form:

gly =90 fly100) + £7(0) — Aut(F).
A moment’s thought on the diffeomorphic model of the fibre bundle in a local trivialisation leads
to the conclusion that the base projection is a surjective submersion. A simple yet physically
signicant consequence of this fact is captured by
Theorem 1. Let My, A€ {1,2} be smooth manifolds, and let the smooth map f : M; — M,
be submersive at 2 € M;. There exists a neighbourhood Oy .y c My of the point f(z), on which
we find a well-defined smooth map o : O,y — M; with the following properties

(1) foo=ido,., A oof(z)=z.

The map is termed a local section of f through z.

Proof: The statement is of a local character, and so we may restrict our considerations to a neigh-

bourhood O, 3> z which supports a local coordinate chart «; : O, =, Uy, Uy € T(R*™), nq =
dim M; such that r;(x) = 0, and to a neighbourhood Oy, > f(z) which supports a local co-
ordinate chart xo : 5,‘(1) =, Us, Uy € T(R*™2), ny = dim My such that xo o f(x) = 0. The
submersivity of f at = implies that the tangent map

Te@-o(kzo fori) © Ty (@)=oR*"™ =R*™ — T, o()-oR* ™ = R*"

is an epimorphism between the R-linear spaces. Let V3 c R*™ be an arbitrary subspace mapped
isomorphically to R*"> by (the restriction of) T, ) (r20 fori'). Then, the tangent of the smooth
map

Fi=kgo for] lyny, @ Ui NV —> U c R,

with a manifestly nonempty domain (note that V; is a subspace in R*™', and U; is a neighbour-
hood of the zero vector), is invertible. Indeed, in virtue of the identity ToV;j = V4, the domain of
ToF takes the form Toly N TV = R*™ nV; = V4, which means that ToF' is an isomorphism

ToF =To(kgo fo /$Il)|v1 )

Invoking the Inverse-Function Theorem, we infer that F = kg o f o k't luyny, admits a desired
(smooth) inverse k100 o I€51 Fuy) on a certain neighbourhood Uy c F(U; nVy) of the vector
0 = kg 0 f(z). The homeomorphic preimage x5! (Uy) of the latter can be chosen as the postulated
neighbourhood of f(z), on which there exists a smooth local section . O

Submersions enjoy a status in the smooth category akin to that of universal objects studied
in the elementary course on (linear) algebra. This is illustrated in

Theorem 2 (Quasi—universalityﬁ of submersions). Let f : M; — M> be a (smooth) surjective
submersion. Furthermore, let N be a smooth manifold, and let F' : M; — N be an arbitrary
map. The latter is smooth iff the composite map F o f : M; — N has this property. In

3The reason why the standard notion of universality is qualified by the prefix ‘quasi-’ is that the class of objects
for which a pair (Ma, f) plays the role of an initial object is defined in terms of the map f itself (through the
condition of constancy on the fibres of the latter).
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particular, to every smooth map F : M; — N constant on fibres of f, there corresponds
a unique F € C*~(Ms, N) with a property expressed—in conjunction with the said property of
f—Dby the commutative diagram

My xpp, My

N
M
f
F

e
\\M/

Proof: Whenever F'is smooth, so is F o f as a superposition of smooth maps.

M,y

Conversely, let F o f e C*°(My, N). Due to surjectivity of f, an arbitrary point in M, can be
written as f(z) for some x € M7. Pick up a point f(z) € My together with its neighbourhood
Oy () € My such that there exists a local section o : Oy(,) —> My of the map f, satisfying .
We then obtain, in the notation of the proof of Thm.[I} the following identity:

Frof(m) EFOidOf(z) =(Fof)oo,

which ensures smoothness of F'I, j(sy D consequence of the assumed smoothness of Fo f and the
same property of the local section o, stated in Thm.[I] The arbitrariness of our choice of f(z)
implies global smoothness of F'.

Finally, let us address the question of existence and uniqueness of a map F' € C* (M, N),

assumed to obey
F=Fof.
First of all, note that any two such maps coincide on the set f(M;), which is the same as Ms by
surjectivity of f. Hence, there is at most one map F'. Invoking surjectivity of f once more, we
postulate F' in the manifestly smooth form
F: My— N : f(z)— Foo(f(z))=F(z),

in which o is an arbitrary section as in Thm.[I} That the definition makes sense is ensured by
the assumed constancy of F on fibres of f-—indeed, F/(z) does not depend on the choice of a
representative of the fibre f~1({f(z)}), i.e., it does not depend on the choice of a section o, whose
existence is guaranteed by the theorem). The desired identity

Fo f(z)=F(x)

now follows by definition. U

When referred to the base projection of a fibre bundle, the above analysis of elementary properties
of surjective submersions leads us to distinguish certain sets of mappings, indicated in

Remark 1. The set of local sections of a fibre bundle (E, B, F,7g) is denoted as
Dioc(E)
whereas the set of its global sections is denoted as
I'(E).

Definition [I| provides us with just the desired rigorous geometric rendering of the nebular phys-
ical concept of a smooth distribution, over a given spacetime B, of internal degrees of freedom F
(amenable to further structurisation). The existence of local trivialisations paves the way towards
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encoding the information about the structure of the bundle in the locally smooth transition maps
gij- Exactly how rich and comprehensive that information is, we state in

Theorem 3 (The Clutching Theorem). Transition maps of a fibre bundle (E, B, F,7g) with a
trivialising cover Op = {O, };cr of its base B satisfy the 1-cocycle condition

(2) Vigkel, ve0is ¢ 9ij(€) 0 gy ()™ o gri(w) = idp .

Conversely, let Op = {O;};c; be an open cover of a smooth manifold B, and let F' be an arbitrary

smooth manifold with an automorphism group Aut(F) ¢ Diff ™ (F') (see previous remarks). An
arbitrary family of maps

gij ¢ Oij—>Aut(F), i,jGI
inducing smooth maps
Oy xF—F & (,f) — gi5(x)(f)
and satisfying the above condition determines a fibre bundle with transition maps, associated

with Op, given by the g;;. Whenever these latter maps come from a fibre bundle over B (as its
transition maps), the induced bundle is (canonically) isomorphic with the original (inducing) one.

Proof: The first part of the theorem is a direct consequence of the following equality, true for
every triple (i,7,k) € (IX?’) and (x, f) € O x F:

(z, f) (ido,,, xidp)(z, f) = ((rier; ) o (rhor; ) o (mhon ') (x, f)
(2,955 (2) © grj ()" o gri(@)(f)).-

The point of departure of the second part is the construction of the disjoint union | J;e; (O; x F)
(in the catregory of sets), on which we define a relation

. . y=.’1,‘€0ij
@)~ (.00) = {g:gﬁ(xxf)’

The 1-cocycle condition satisfied by the transition maps implies that this is an equivalence relation.
Indeed, for i = j = k, we obtain
9ii(2) = gii(2) ° gii(x) ™ 0 gii(z) =idp,
and so ~4 is reflexive. , This further results in skew symmetry of the g;;,
95i(x) © gij (x) = gji(x) 0 gr() " 0 gij (2) = idp,
which translates into symmetricity of ~, . iFinally, a suitably rewriting of the 1-cocycle condition:
9ij () 0 g (x) = gij(x) 0 gij (x) ™" = gri(2) ™" = gir(x) ,

demonstrates its transitivity. Therefore, we may pass from |l;c; (O; x F) to the set of equivalence
classes

.. = (LI(Oi x F)) /..,

i€l
on which we define a map
T#,. + Ke.> B [(z, )], —=.

Note that every class [(z, f,i)]., contains exactly one representative with a given index, (z, f,1) €
O; x F x{i}, because—by definition—

(yagai)e[($vai)]~g.. - (y,g):(z,gii(w)(f)):(ac,idp(f))=(x,f).
Since, furthermore,
v(w,f)EOixF : ((E,f,i) € [(x7f7i)]~g,. ’
we establish a bijection

(7] : 7, (0) = OixF : [(x,f.)]-, — (z,f).
6



A bundle of facts about bundles (DDD ’24/25 V [rrS])

In the next step, we endow %, = with the quotient topology, declaring as open an arbitrary subset
O c %,.. whose preimage along the (canonical) projection

3) T [ J(Oix F) — %,

i€l

is open in ,@g_ﬁ_ in the disjoint-sum topolog of the spaces O; x F, i € I, each of which carries the
usual product topology. In the said quotient topology, the bijections [7;] are homeomorphisms, and
the projection T, . s continuous (tautologically). The topology is hausdorff. Indeed, whenever
[(z1, f1,91)]~, # [(22, f2,i2)]~, , we encounter a disjunction: Either x5 # x1, in which case we
separate points z; and zo by taking the respective opens O; c O;; and O3 c O;, in the hausdorff
(by assumption) base B, whereupon we take manifestly disjoint neighbourhoods 7.(O, x F x
{ia}), a € {1,2} of the corresponding two classes in %, (. identifies points in the fibre over
a point in the base!), or xo = 21 with i3 =4y (the equality xo = 1 makes it possible for us to
choosec is = i1, potentially at the expense of changing f5), and so we may separate points f; and
f2 by putting them in the respective opens U; and Us in the hausdorff (also by assumption) fibre
F, whereupon we form disjoint (open) neighbourhoods 7.(O;, xU, x {i1}), a€{1,2} of the two
classes %, . (this time round, (nontrivial) identifications only pertain to points in ;e (O; x F)
with (cover) indices different from i1).

At this stage, we may construct an atlas on the topological space defined above. To this end,
we fix atlases on the O; through restriction of an arbitrary atlas on the base B. In this way,
we obtain local (coordinate) charts & a4 : O;a = Ui.a, AeJ; onsubsets O; 4 € 7(0;) (in
subspace topology) modelled on the respective U; 4 € 7 (R*™), n = dim B, alongside an atlas on
the typical fibre (, : V., = Wa, « € K with subsets V, € J(F) modelled on the respective
Wa € Z(R*™), m = dim F. We then define an atlas on %, . as the set of local charts

. - 2 +
Ri A, . Qi,A,a = WN(Oi,A X Va) - Z/{i,A X Wa c R

[(1‘, f’ i)]“‘g.. — (fZ}A(x)a Ca(f)) ;
which are well-defined as—in the light of our fomer conclusions—there exists, for each class
[(z, f,i)].,., a unique representative (x,f) € O; a4 x Vo ¢ O; x F' with a fixed index i € I. In
the intersection of their domains, we find coordinate transformations

Ki,Aaj,B,S = KiAa®Kjpg °* 1,8,8(0i 45,8 % Vap) = Ki4,0(05,4,8 x Vag)
(&.8(2),¢a(f)) — (&,a(2),Ca 0 gi5(x)(f))
= (6408 5(8.8(2)) Cao (9 0855) (&) 0 G5 (Cs(S)))-

Bearing in mind that the & 4 o gjfjg are coordinate transformations of the (refined) atlas on B,
smooth by assumption, and that the g;; o 5;}9 are local presentations of transition maps, likewise
smooth by assumption (in the previously considered sense), and—finally—that the (,0g;;(x) 0%1
are local (coordinate) presentations of the automorphisms g;;(x) of the fibre F, also smooth by
assumption, we conclude that the transformations x; 4.4 j,B,3 are smooth. Hence, the local charts
Ki Ao endow %, with the structure of a smooth manifold. Relative to it, the maps [7;] are
(tautologically) diffeomorphisms (as is the base projection 7%, o, , . =pryo[7i]), and so they
induce on %, the structure of a fibre bundle. ,

We complete the proof by demonstrating the equivalence of the two structures of a fibre bundle:
the one on a given fibre bundle (E, B, F, 1), with local trivialisations 7; : 75 (O;) =0 xF, i€
I, and the onre obtained through the above reconstruction from the latter’s transition maps g;;.
For that, we consider the local mappings

4) vi=[r]ltor t mE(0;) — Oy x F — 7@;19__(02-), iel.
4The standard topology on a disjoint sum is composed of sets whose preimages along all canonical injections

Oj x F — ;er (O x F') are open.
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Note that these local diffeomorphisms satisfy, at every point y € 7@1(0”), corresponding to some
z €0;; and f e F' through the formula y = 77 (x, f), the relation

(@, ) =[] eorjor (e, f) =[] (@, g5(2) () = [1] 7 o [l o [15]7 (2, 956 (2)(f))
(7] (2,915 () 0 gji(x)(f)) = [1] (@, f) = [m] T omion (=, f) = uily),

and so they are restrictions of a global diffeomorphism

ti(y)

L B2 Ry.. s
given by
LrW_El(Oi) =l .

The diffeomorphism fits into the commutative diagram

B——> %,

TE Tr@g_“
’

B——B

ldB

which permits us to identify ¢ as the postulated bundle isomorphism. O

2. THE CANONICAL EXAMPLE, AND AN ABSTRACTION

A geometrically natural—even canonical (in the sense of it being fully determined by the smooth
structure on its base)—example of a fibre bundle is the tangent bundle over a given smooth
manifold (M, 2 ). There exist several equivalent definitions of this bundle, each emphasising a
different structural property. Below, we recall one of them, which bases on the fundamental theorem
just proved.

Definition 2. Let (M,JZZ) be a smooth manifold of dimension n € N*, with atlas < = {Ki}ier
associated with an open cover Oyps = {O; }ic;. The tangent bundle over M is the smooth manifold

(TM, T,QZ) constructed as follows:

- the underlying set is that of equivalence classes

TM := (|_|I O0; xR*™) [ ~py.
of the relation
3 3 Yy=xce€ Oij
oD ) = | o st 0] = Dia (o))

which comes together with the map

v 2 TM — M @ [(z,v,i)]

>
~Dt.. T )

called the canonical projection (on the base of the tangent bundle), whose level
set

T.M = W}}w({x})

carries the name of the tangent space at point z;
- the topology of the set TM is the quotient one, induced along the surjective projection

Te t |_[| 0; x R — (l_]l 0; x Rxn)/ ~Dt.. * (:L',U,i) — [(Ivvai)]~m“
8
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from the disjoint-sum topology for the family of spaces O; x R*" indexed by I, with
canonical injections

7i 2 O xR — | | O; xR*™ : (z,v) —> (x,0,4), i€l

gel
whose domains carry product topology
TOM):={O0cTM | Vs : 3;'(727(0)) e 7(0; xR*")} ;

- the smooth structure on the above topological space TM is defined by the (manifestly
homeomorphic) maps

Tri + w7 (05) —> Uy xR [(2,0,4)]ep, > (ki(2),v), i€l

also known as natural charts (coefficients of the decomposition of a vector v in a basis
(chosen arbitrarily) are promoted to the rank of global coordinates on R*™), which, in
turn, determine coordinate transformations

thi = Tlij o (T,‘Qi)_l [‘M(OU)XRxn . Hi(Oij) X Rxn —;—> va(Oij) X Rxn

(ri(2),v) — (k;(2), Dtji(ri(2))(v)),
obviously lower by one in the degree of smoothness with respect to those of the underlying
manifold M, that is still co —1 = oo in our case—thus, we are dealing here with a smooth
action of the structure group GL(R*™;R) 3 Dt;;(x,(z)).

The equivalence class
() V()= [(z,0,8)]~,. € TaM
is called a tangent vector on (M,.«7) (attached) at point x e M.
The (smooth) map
OT]\/I M —TM : z+— [($,07L,i)]

is referred to as the zero section of the tangent bundle TM.

~Dt..

A linear structure, which we anticipate in a model of the “space of infinitesimal motions” or “space
of velocities”, is camouflaged in our definition as the judicious choice of the local model of the
typical fibre R*4™M with a natural interpretation in terms of local coordinates.

Proposition 1. For every pointt € O; ¢ M in a smooth manifold (M, ;@ of dimension n € N*,
the map

Tk; Pro
Toki ¢+ ToM — U x R¥™ 22, RX7

[(x7v7i)]NDt.. —_ (Hi(x)7v) v,
given as the supersposition of a local (natural) chart on TM with the canonical projection onto
the second component of the cartesian product, is a bijection and, as such, canonically induces on
T.M the structure of an R-linear space,

T, M R*™
R

<112

—

)

m.

termed the tangent space of M at z.

Proof: The R-linear structure referred to in the statement of the proposition is determined by the
formula

A1 > [(m’vlvi)]mn +Ag > [(Ivv%i)]ﬂ)u = [(Iv)‘l > g+ A b U27i):|~Dt.. )

written for arbitrary Ai, A2 € R. Owing to the R-linear character of the equivalence relation in
Def. this structure is well-defined. Indeed, let z € O;; and let wq := Dt;; (ki (x))(va), a€{1,2},
to obtain

/\1 > [(x?wl?j)]"‘Dt“ + >\2 > [(x7w27j):|~Dt“ = [(1‘7)\1 >wp + AQ > w?aj)]~ot“
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[(, A1 > Dtji(ri(2))(01) + A2 > Dtji (ki (2) ) (v2),5) 1oy

[(,T, Dtﬂ(m(:v))()\l DU+ Ag > Ug),j)]N = [(l‘,)\l DU+ Ag > vg,i)]NDt"

A > [(x’/l]17i):|~|)t“ + A > [(x/UQ’Z.)]NDt“ :

From the above, we abstract a notion of a bundle with an additional linear structure on the
typical fibre, which is ‘propagated’ coherently (in particular, smoothly) over the base. This we
give in
Definition 3. Let n € N and consider the field K € {R,C} with the standard (euclidean) topology
and smooth structure. A (smooth) vector bundle of rank r over field K is a fibre bundle
(V,B,K*", my) with the following properties:

o Vo : Vy=mt({z}) € ObVect]§<<°°);
o restrictions of the diffeomorphisms (local trivialisations)
prooTily, : Vg i)er7 reB

are K-linear isomorphisms ,

with the maps that define the K-linear structure on fibres of V smooth over B. By the latter, we
mean that there exist maps:

e a smooth map
(6) A VxpV—V

modelled on the defining binary operation A" : K*" x K*" — K*” in the sense expressed
by the commutative diagram

Ty (0i) xp 75 (O) 75 (O;)
(7) T T
(0i xK*") xo, (0; x K*) O; x K*"

(pr1>A7'°Pr2,4)
e a family of diffeomorphisms:
(8) K* — Diff*(V) : A+— Ly

with K-linear restrictions to fibres, augmented by the K-linear map Lg,, modelled on the
defining action ¢" : KxK*" — K*" in the sense expressed by the commutative diagram

L
7' (0;) 1 (0)
(9) Ti T3
O; x K*" = 0; x K*"

A

If K =R, we speak of a real vector bundle, whereas for K = C, we have a complex vector
bundle.
10
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The rank of the vector bundle is denoted as rk V. Whenever rkV = 1, we call V a line bundle,
and customarily denote it as L,

Ko~ L

Sy

The smooth map
Oy : B—V : z+s71(2,0"), zec0;,

is termed the zero section of V. It is a global section of V in the sense of Remark [} It is also
to be noted that I'(V) carries a (pointwise) structure of a module over the ring C*°(B,K).

A vector subbundle of rank s < r in a vector bundle (V, B,K*" my) is a subbundlea (W, B,
K*¢ mylyw) of that fibre bundle with the following property: over every point x € B of the base,
the fibre W, cV, is a K-linear subspace of V,.

A morphism of vector bundlesh (over field K) (V,, By, K", 7y_), ro €N, a€{1,2} is
a bundle map

(‘I’,f) : (VlaBlaerlvﬂ-V1)—)(VQ,BQ’KXMJTV?,)’
with K-linear restrictions
(10) Ply,, * Vie — Vo
The rank of (@, f) is the map
tk(®,f) : By — N : 2 —1k(2ly, ).
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