
PRINCIPALITY – A JAZZY AND USEFUL PROPERTY
(DDD ’24/25 VI [RRS])

Figure 1. Sua Tremendità (His Tremendousness) Giorgio I — by education and
passion, a flower grower; by office and imagination, the princeps of Principato
di Seborga, a country recognised (according to the 297 Seborgans themselves) by
Burkina Faso and flourishing under the pragmatic motto: Sub umbra sedi! (Sit
in the shade!).
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The concept of (endo-)diffeomorphism—a smooth and smoothly invertible self-mapping of a
differentiable manifold M—admits a useful and consequential reinterpretation: Any such map f ∈
Diff(M) can be regarded as a coordinate transformation, in which the original (local) coordinates
in a chart O ∋ x around a given point x ∈M are replaced by those in a chart Õ ∋ f(x) around
the image f(x) of that point under the map. This interpretation of diffeomorphisms is sometimes
labelled ‘passive’, in order to distinguish it from the original one (in which points in M are
understood to actually map to one another, i.e., to move), termed ‘active’ in this context.

Accordingly, whenever we are given a global symmetry of a field theory, realised by distin-
guished (endo-)diffeomorphisms G ⊂ Diff(F ) of the typical fibre F of its configuration bundle
(E,B,F, πE) modelling internal degrees of freedom of the field, we can think of it as a subgroup of
coordinate transformations in the latter space preserving the dynamics (as captured by the action
functional). This then leads us to contemplate a meaningful redefinition of the theory in which
symmetry transformations prescribed globally (i.e., determined, each, by a single diffeomorphism
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for all fibres of E) are replaced by families of diffeomorphisms γ(x) ∈ G depending smoothly (in
conformity with the underlying smooth paradigm of our mathematical modelling of field-theoretic
phenomena) on the point x ∈ B in the spacetime base B of E. This is the conceptual founda-
tion of a field-theoretic procedure known as the gauging of the global symmetry G, or rendering
the latter local. Its deep geometric meaning is encoded in Cartan’s mixing construction [Car50],
recently reviewed by Tu in his monograph [Tu20] – it boils down to the reduction of the space
of internal degrees of freedom from the original one F to its orbispace F //G. The problem here
is that the latter is—in general—not smooth, and so it cannot be accessed directly within the
said smooth paradigm. As shall be argued simply & intuitively in the next lecture, the gauging
is a method of effectively modelling the orbispace (‘up to homotopy’) by a smooth space, and
working with the smooth model instead. Before we get there, though, we need to pass through
some mathematical preliminaries, which will provide us, i.a., with a smooth geometric model of
a ‘space of local (observation/description) frames’, also known as local gauges, in a field theory
with the global symmetry G gauged (i.e., rendered local). This we first define for the conventional
model of symmetries, that is—a smooth (Lie-)group action on F .

1. A motivating canonical construction

Last time, we encountered the construction of a fibre bundle canonically associated with an
arbitrary smooth manifold (or, indeed, even of class C1) given by the tangent bundle of that
manifold. The bundle turned out to be endowed with a natural and intuitively anticipated linear
structure on the fibre, from which one abstracts the notion of vector bundle, a geometrisation of the
algebraic structure of a vector space. The canonical nature of the construction of the tangent bundle
(i.e., the lack of any topological obstruction against its realisation) demonstrates the naturality of
the construction in the smooth category. We shall now follow the trail of canonical constructions
straight towards the goal of our investigation: the fibre bundles that enter the gauging procedure
(or, equivalently, the mixing construction) for group-like symmetries and their generalisations. For
this purpose, we shall consider another example of a canonical geometrisation of a simple algebraic
structure, only to abstract from our considerations a definition of a new class of fibre bundles.

One of the most natural procedures one can perform in a given linear space is a choice of a
basis {ei}i∈1,D, D = dimK V , i.e., a choice of an isomorphism

K×D ≅ÐÐ→ V ∶ (v1, v2, . . . , vD) z→ vi ⊳ ei .
This construction has a somewhat nontrivial counterpart in the theory of vector bundles, which
we consider next.
Definition 1. Let (V,B,K×r, πV) be a vector bundle of rank r ∈ N×, with local trivialisations
τi ∶ π−1V (Oi)

≅ÐÐ→ Oi ×K×r associated with an open cover OB = {Oi}i∈I of its base B. The frame
bundle of V is the fibre bundle

(FGLV,B,GL(r;K), πFGLV)
with the following components:

● the total space

FGLV ∶= ⊔
x∈B

IsoK(K×r,Vx)

with a smooth structure induced along trivialisations {τi}i∈I and with a fibre (FGLV)x ≡
IsoK(K×r,Vx) given by the set of all bases βx ∶ K×r

≅ÐÐ→ Vx of the fibre Vx of V;
● the typical fibre GL(r;K) ≡ AutK(K×r);
● the base projection πFGLV ∶ FGLVÐ→ B ∶ (βx, x) z→ x.

Inverses Fτi of the maps

Fτ−1i ∶ Oi ×GL(r;K) ≅ÐÐ→ π−1FGLV(Oi) ∶ (x,χ) z→ (τ−1i (x,χ(⋅)), x)
induce on FGLV a strong pullback topology from the product (subspace) topology on Oi ×
GL(r;K) (the topology on GL(r;K) being that of a subspace of the vector space K(r) ≅ K×r2),
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i.e. one in which a subset U ⊂ FGLV is open iff it satisfies the condition

∀i∈I ∶ Fτi(U ∩ π−1FGLV(Oi)) ∈ T (Oi ×GL(r;K)) .
In this topology, the Fτi are homeomorphic local trivialisations with the associated transition
maps

gFGLV
ij ≡ HomK(K×r, gij(⋅)) ∶ Oij Ð→ EndK(GL(r;K)) ∶ xz→ HomK(K×r, gij(x)) ,

where

HomK(K×r, gij(x)) ∶ GL(r;K) ↺ ∶ χz→ gij(x) ○ χ .

The smooth structure on the bundle is induced along the homeomorphisms Fτi from the product
smooth structure on the local model Oi×GL(r;K), trivial on the second factor and that obtained
through intersection with the atlas ÂB on the first (base) manifold B. Relative to this struc-
ture, the local trivialisations Fτi are tautologically smooth, as is the base projection, with local
restrictions πFGLV↾π−1FGLV(Oi) ≡ pr1 ○ Fτi which glue over the intersections Oij .

The above definition calls for a few comments. First of all, note the existence of a natural right
action—fibre by fibre—of the group GL(r;K) on the total space FGLV, given by

r ∶ FGLV ×GL(r;K) Ð→ FGLV ∶ ((βx, x), χ) z→ (βx ○ χ,x) ≡ (βx, x) ⊲ χ .

This action is manifestly free due to invertibility of elements of the fibre IsoK(K×r,Vx). Moreover,
it is transitive over every point x ∈ B—indeed, for every pairy βx1, βx2 ∈ IsoK(K×r,Vx), we have
an identity

βx2 ≡ βx1 ○ (β−1x1 ○ βx2) ,
but β−1x1 ○ βx2 ∈ EndK(K×r) is invertible, with the inverse β−1x2 ○ βx1, and so we may write

(βx2, x) = (βx1, x) ⊲ (β−1x1 ○ βx2) .
We conclude that IsoK(K×r,Vx) is a GL(r;K)-torsor. A choice of an element βx∗ ∈ IsoK(K×r,Vx)
determines a noncanonical (GL(r;K)-equivariant) isomorphism

IsoK(K×r,Vx)
≅ÐÐ→ GL(r;K) ∶ βx z→ β−1x∗ ○ βx .

From the above, we readily infer that the Fτ−1i are bijective: They assign to elements of the set
{x}×GL(r;K), x ∈ Oi those of IsoK(K×r,Vx)×{x} in a manifestly injective manner. Hence, they
are invertible, specifically

Fτi ∶ π−1FGLV(Oi) Ð→ Oi ×GL(r;K) ∶ (βx, x) z→ (x,pr2 ○ τiβx) ,
which enables us to use them to induce a topology on FGLV in the way described. Their identifi-
cation as local trivialisations bases on the following direct calculation:

Fτi ○ Fτ−1j ∶ Oij ×GL(r;K) ↺

∶ (x,χ) z→ Fτi(τ−1j (x,χ(⋅)), x) ≡ Fτi(τ−1i ○ τi ○ τ−1j (x,χ(⋅)), x)

= Fτi(τ−1i (x, gij(x) ○ χ(⋅)), x) ≡ Fτi ○ Fτ−1i (x, gij(x) ○ χ(⋅))

= (x, gij(x) ○ χ(⋅)) ,
in which gij ∈ C∞(Oij ,GL(r;K)) are transition maps of V. The calculation demonstrates the
smooth character of the Fτi ○ Fτ−1j .

Last, we note that the maps Fτ−1i (and so also the local trivialisations Fτi) intertwine (i.e., are
equivariant relative to) the right actions of the group GL(r;K): the regular one ℘ on the second
cartesian factor in their domain and the above-defined r on their codomain. Indeed, we compute
directly, for γ ∈ GL(r;K) arbitrary,

Fτ−1i ○ (idOi × ℘γ)(x,χ) = Fτ−1i (x,χ ○ γ) = (τ−1i (x,χ ○ γ(⋅)), x) ≡ (τ−1i (x,χ(⋅)) ○ γ(⋅), x)

≡ (τ−1i (x,χ(⋅)), x) ⊲ γ ≡ rγ ○ Fτ−1i (x,χ) .
3
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Consequently, the local trivialisations are compatible with the structure of a GL(r;K)-torsor on
the fibre of the frame bundle, noted previously.

The above is a perfect springboard for an abstraction given in the next section.

2. Principal bundles: axiomatics, elementary properties and morphisms

We start with the fundamental
Definition 2. Let G be a Lie group. A principal bundle with structure group G is a pair

((P,B,G, πP), r)
composed of

● a fibre bundle (P,B,G, πP);
● a right action r ∶ P ×GÐ→ P

with the following properties:
● the action r is free and fibrewise transitive, and represented by the commutative diagram

P ×G r //

pr1

��

P

πP

��
P πP

// B

;

● the local trivialisations

τi ∶ π−1P (Oi)
≅ÐÐ→ Oi ×G , i ∈ I ,

associated with a trivialising open cover O = {Oi}i∈I of the base B, are G-equivariant
with respect to the right actions: r on the domain, and the regular one ℘ on the second
cartesian factor of the codomain,

℘̃i ≡ idOi × ℘ ∶ (Oi ×G) ×GÐ→ Oi ×G ∶ ((x, g), h) z→ (x, g ⋅ h) ,
i.e., they satisfy the conditions

τi ○ rg = ℘̃ig ○ τi , i ∈ I, g ∈ G .

A principal subbundle of a principal bundle (P,B,G, πP), r) is a subbundle (PH,B,H, πP↾PH
)

of that fibre bundle with the fibre given by a Lie subgroup H ⊂ G, and the defining action of H
on its total space induced from r through restriction.

A morphism of principal bundles (Pα,Bα,Gα, πPα), rα), α ∈ {1,2} is a triple (Φ, f, φ)
composed of a bundle map

(Φ, f) ∶ (P1,B1,G1, πP1) Ð→ (P2,B2,G2, πP2)
and a Lie-group homomorphism φ, the three being related as in the following commutative dia-
gram:

P1 ×G1
r1 //

Φ×φ

��

P1

Φ

��

πP1 // B1

f

��
P2 ×G2

r2
// P2 πP2

// B2

.(1)

Example 1.
(1) A trivial principal bundle with structure group G over B, i.e., the trivial bundle

(B ×G,B,G,pr1) ,
with the defining action given by the right regular action of G on the second cartesian
factor of the total space.
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(2) The frame bundle of a vector bundle V modelled on K×r, i.e., the fibre bundle

(FGLV,B,GL(r;K), πFGLV)
with the action of GL(r;K) detailed in Section 1. In particular, we have the tangent
frame bundle over a smooth manifold M (of dimension n):

(FGLTM,M,GL(n;R), πFGLTM) .
(3) The Hopf fibration—once again, but this time viewed as

(SU(2) ≡ S3,S2,U(1), π) ,
in which the base projection takes the form

π ∶ SU(2) Ð→ S2 ⊂ R×3 ≅ C ×R ∶ ( z1 z2
−z2 z1

) z→ (2z1 ⋅ z2, ∣z1∣2 − ∣z2∣2) ,

and the defining action of the structure group U(1) is given by

r⋅ ∶ SU(2) ×U(1) Ð→ SU(2)

∶ (( z1 z2
−z2 z1

) , u) z→ ( z1 ⋅ u z2 ⋅ u−1
−z2 ⋅ u z1 ⋅ u−1

) ≡ ( z1 z2
−z2 z1

) ⋅ ( u 0
0 u

) ,

where in the last equality the group U(1) appears as a subgroup of the Lie group SU(2).
Definition 3. Let ((P,B,G, πP), r) be a principal bundle, and consider the corresponding fibred
product

P ×B P ∶= { (p1, p2) ∈ P × P ∣ πP(p1) = πP(p2) } .
The division map of P is the map

ϕP ∶ P ×B PÐ→ G

determined (uniquely) by the condition

∀(p1,p2)∈P×BP ∶ p2 = p1 ⊲ ϕP(p1, p2) .
Remark 1. The smoothness of the division map is best seen in a local trivialisation. Indeed, let
p1, p2 ∈ (P)x, x ∈ Oi, i ∈ I, where pα = τ−1i (x, gα), α ∈ {1,2} for some gα ∈ G. We then have the
equality

p2 = τ−1i (x, g2) ≡ τ−1i (x, g1 ⋅ (g−11 ⋅ g2)) = τ−1i (x, g1) ⊲ (g−11 ⋅ g2) ≡ p1 ⊲ (g−11 ⋅ g2) ,
from which a local presentation of ϕP ensues:

ϕP(p1, p2) ≡ g−11 ⋅ g2 =m(Inv ○ pr2 ○ τi(p1),pr2 ○ τi(p2)) ,
given as a superposition of smooth maps (m is the binary operation on G), and hence smooth.

The basic structural properties of ϕP, to be used amply in what follows, are summarised in
Proposition 1. The division map ϕP of a principal bundle ((P,B,G, πP), r) satisfies identities
expressed by the following commutative diagrams:
(DM1) (the 1-cocycle condition)

P ×B P ×B P
(ϕP○pr1,2,ϕP○pr2,3) //

ϕP○pr1,3

))

G ×G

M

��
G

,

where pri,j ∶ P×BP×BPÐ→ P×BP ∶ (p1, p2, p3) z→ (pi, pj), (i, j) ∈ {(1,2), (2,3), (1,3)}
is (the restriction of) the canonical projection; in other words,

∀(p1,p2,p3)∈P×BP×BP ∶ ϕP(p2, p3) ○ ϕP(p1, p3)−1 ○ ϕP(p1, p2) = e ;
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this implies, in particular, skew symmetry

P ×B P
τP,P //

ϕP

��

P ×B P

ϕP

��
G

Inv
// G

,

where τP,P ∶ P ×B P ↺ ∶ (p1, p2) z→ (p2, p1) is (the restriction of) the canonical
transposition; in other words,

∀(p1,p2)∈P×BP ∶ ϕP(p2, p1) = ϕP(p1, p2)−1 ;
(DM2) (G-equivariance)

P ×B P

ϕP

��

(P ×B P) ×G
(r○pr1,3,pr2)oo idP×r //

ϕP×idG

��

P ×B P

ϕP

��
G G ×G

ℓ○(Inv×idG)○τG,G

oo
℘

// G

,

or, in other words,

∀(p1,p2)∈P×BP, g1,g2∈G ∶ ϕP(p1 ⊲ g1, p2 ⊲ g2) = g−11 ⋅ ϕP(p1, p2) ⋅ g2 .
Furthermore, the following identity holds true:

(pr1, ϕP) = (pr1, r)−1(2)

for the two smooth maps P ×B PÐ→ P ×G, i.e., we have, in particular

P ×B P ≅ P ×G .(3)

Proof: Obvious. □

Remark 2. The existence of a smooth inverse of the map (pr1, ϕP) permits us to meaningfully and
rigorously identify the base B of the principal bundle with the smooth quotient P/G, in keeping
with Godement’s Criterion (Thm. I.21.). To this end, consider on P ∋ p1, p2 the equivalence relation
defined as

p1 ∼ p2 ⇐⇒ ∃g∈G ∶ p2 = p1 ⊲ g .
Its graph is quite simply

R ≡ (pr1, r)(P ×G) ≡ P ×B P ⊂ P × P .

It is, in particular, an embedded submanifold in P × P (as a fibred product of manifolds). But in
view of the above, it is also a homeomorphic image of the (closed) topological space P×G, hence
it is closed (because (pr1, r) is a closed map). Finally, note that pr1↾R is manifestly submersive.
Altogether, then, the quotient P/ ∼ carries a (unique) smooth structure with respect to which the
quotient map

π∼ ∶ PÐ→ P/ ∼
is a surjective submersion. However, from the definition of the equivalence relation considered,
we read off the identity P/ ∼≡ P/G, and it is intuitively clear that the submersion π∼ is but an
elternative description of πP.

A diffeomorphism P/G ≅ B can be written out explicitly. Consider a map

ι ∶ P/GÐ→ B ∶ p ⊲ Gz→ πP(p) .
6
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It is manifestly well-defined (as the defining action r preserves πP-fibres). It is also smooth by
Thm. V.2., as it closes the commutative diagram

B

P π∼
//

πP

88

P/G

ι

OO

,

with πP and π∼ smooth, and the latter a surjective submersion.
Next, choose (arbirarily) a trivialising cover OB = {Oi}i∈I of B, and use the flat unital sections

σi ∶ Oi Ð→ P ∶ x ∈ τ−1i (x, e) induced from the corresponding local trivialisations τi of P to
define smooth local maps

ȷi ∶= π∼ ○ σi ∶ Oi Ð→ P/G ∶ xz→ σi(x) ⊲ G .

These satisfy, at points x ∈ Oij , identities

ȷj(x) = σj(x) ⊲ G ≡ τ−1j (x, e) ⊲ G = (τ−1i (x, e) ⊲ gij(x)) ⊲ G ≡ τ−1i (x, e) ⊲ G ≡ ȷi(x) ,

which base on the assumed G-equivariance of the trivialisations. Thus, the ȷi glue up to a globally
smooth map

ȷ ∶ B Ð→ P/G , ȷ↾Oi
= ȷi .

Finally, we check, for x ∈ Oi and p ≡ τ−1i (x, g) ∈ π−1P (Oi),

(ι ○ ȷ)(x) = ι(ȷi(x)) = ι(σi(x) ⊲ G) ≡ πP(σi(x)) = x

and

(ȷ ○ ι)(p ⊲ G) ≡ ȷ(πP(p)) = ȷi(x) ≡ σi(x) ⊲ G ≡ τ−1i (x, e) ⊲ G = (τ−1i (x, g) ⊲ g−1) ⊲ G

≡ (p ⊲ g−1) ⊲ G = p ⊲ G ,

and conclude that ȷ is a smooth inverse of the smooth map ι. The latter is the desired diffeomor-
phism

ι ∶ P/G ≅ÐÐ→ B .(4)

One can actually nail down the nature of the defining action r on the total space of the
principal bundle upon invoking an equivalent definition of properness of an action expressed in
terms of convergent (sub)sequences:
Proposition 2. An action λ ∶ G ×X Ð→X of a topological group G on a locally precompact1

topological space (X,T (X)) is proper iff the convergence of an arbitrary sequence of points

λ(g⋅, x⋅) ∶ NÐ→M ∶ nz→ gn ⊳ xn ,

defined in terms of a convergent sequence of points x⋅ ∶ N Ð→ X and an arbitrary sequence
g⋅ ∶ NÐ→ G, implies the convergence of a subsequence of g⋅.

Proof: See MAWF ’23/24 1.XXIV. □

We now readily establish
Proposition 3. The defining action of the structure group on the total space of a principal bundle
is proper.

1A topological space is termed locally precompact if every point in that space belongs to some precompact
set (i.e., one whose closure is compact) which contains an open neighbourhood of the point.
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Proof: Let ((P,B,G, πP), r) be a principal bundle. Consider sequences p⋅ ∶ N Ð→ P and g⋅ ∶
NÐ→ G with properties

lim
n→∞

pn = p , lim
n→∞

(pn ⊲ gn) = p̃ .

As a consequence of continuity of πP and the fibrewise nature of r, we obtain the equality

πP(p̃) ≡ πP( lim
n→∞

(pn ⊲ gn)) = lim
n→∞

πP(pn ⊲ gn) = lim
n→∞

πP(pn) = πP( lim
n→∞

pn) = πP(p) ,

which leads—via Def. 3—to the relation

p̃ = p ⊲ ϕP(p, p̃) .

Let πP(p) ∈ Oi, where Oi is an element of a trivialising open cover of B. There exists an index
N ∈ N such that

∀n≥N ∶ pn, pn ⊲ gn ∈ π−1P (Oi) ,

and so we may consider subsequences pN+⋅ and pN+⋅ ⊲ gN+⋅ in the trivialisation τi ∶ π−1P (Oi)
≅ÐÐ→

Oi ×G, in which

τi(pn) =∶ (xn, γn) , τi(p) =∶ (x, γ) ,

that is

lim
n→∞

(xn, γn) = (x, γ) ,

and hence

τi(pn ⊲ gn) = τi(pn) ⊲ gn = (xn, γn) ⊲ gn = (xn, γn ⋅ gn) ,

and also

τi(p̃) = τi(p ⊲ ϕP(p, p̃)) = τi(p) ⊲ ϕP(p, p̃) = (x, γ) ⊲ ϕP(p, p̃) = (x, γ ⋅ ϕP(p, p̃)) ,

which further implies

lim
n→∞

(γn ⋅ gn) = γ ⋅ ϕP(p, p̃) .

Continuity of group operations then yields

lim
n→∞

gn ≡ lim
n→∞

(γ−1n ⋅ (γn ⋅ gn)) = γ−1 ⋅ (γ ⋅ ϕP(p, p̃)) = ϕP(p, p̃) ,

which concludes the proof. □

Continuing along these lines, in the direction of physical applications to come, we stumble upon
Corollary 1. Let ((P,B,G, πP), r) be a principal bundle, and M —a smooth manifold with a
(left) action λ ∶ G ×M Ð→M of its structure group G. Consider the product manifold P ×M .
The diagonal action of G on the latter given by the formula

λ̃⋅ ∶ G × (P ×M) Ð→ P ×M ∶ (g, (p, x)) z→ (r(p, g−1), λ(g,m))
(5)

is free and proper.

Proof: Obvious. □

Sometimes, we do not have at our disposal the “full package” of structures that enter the
definition of a principal bundle, or follow from it. Therefore, it is worthwhile to pause and look
for an alternative set of constitutive structures, whose existence implies that of a principal bundle.
One such possibility is presented in
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Proposition 4. Let P,B be smooth manifolds, and let G be a Lie group. Assume given a
surjective submersion π ∶ PÐ→ B and a smooth right action r⋅ ∶ P×GÐ→ P of G on P. If r is
free, its orbits coincide with level sets of π, and the map ϕP ∶ P×B PÐ→ G determined uniquely
by the condition

∀(p1,p2)∈P×BP ∶ p2 = rϕP(p1,p2)(p1)
is smooth, then the quintuple

((P,B,G, π), r)
is a principal bundle.

Proof: In virtue of Thm. V.1, there exists an open cover O = {Oi}i∈I of the manifold B, whose
elements support smooth local sections σi ∶ Oi Ð→ P of the submersion π. Accordingly, we may
define the manifestly smooth maps

τ−1i ∶ Oi ×GÐ→ π−1(Oi) ∶ (x, g) z→ rg(σi(x)) .
Using the map ϕP, we readily derive their (smooth) inverses:

τi ∶ π−1(Oi) Ð→ Oi ×G ∶ pz→ (π(p), ϕP(σi ○ π(p), p)) .
These are well-defined as

π(σi ○ π(p)) = (π ○ σi) ○ π(p) = idOi ○ π(p) = π(p) ,
and, indeed, satisfy the postulated identities:

τ−1i ○ τi(p) = τ−1i (π(p), ϕP(σi ○ π(p), p)) = rϕP(σi○π(p),p)(σi ○ π(p)) ≡ p ,

τi ○ τ−1i (x, g) = τi(rg(σi(x))) = (π ○ rg ○ σi(x), ϕP(σi ○ π ○ rg ○ σi(x), rg ○ σi(x)))

= (π ○ σi(x), ϕP(σi ○ π ○ σi(x), rg ○ σi(x))) = (x,ϕP(σi(x), rg ○ σi(x))) = (x, g) ,
the second of which follows from the fact that the action of G maps a level set of π to itself, with

∀(p1,p2,g)∈P×2×G ∶ ϕP(p1, rg(p2)) = ϕP(p1, p2) ⋅ g .

They are also G-equivariant, as required, because2

τ−1i ((x, g) ⊲ h) ≡ τ−1i (x, g ⋅ h) = rg⋅h(σi(x)) = rh ○ rg(σi(x)) = rh(rg ○ σi(x)) ≡ rh ○ τ−1i (x, g) .
The local trivialisations constructed above satisfy, at every point x ∈ Oij , i, j ∈ I, the condition

τi ○ τ−1j (x, g) = τi(rg ○ σj(x)) = (π ○ rg ○ σj(x), ϕP(σi ○ π ○ rg ○ σj(x), rg ○ σj(x)))

= (x,ϕP(σi(x), rg ○ σj(x))) = (x,ϕP(σi(x), σj(x)) ⋅ g) ,
from which we read off the form of the structure maps

gij ∶ Oij Ð→ G ∶ xz→ ϕP(σi(x), σj(x)) .
This completes the identification of the postulated structure of a principal bundle with structure
group G. □

Next, we discuss a useful criterion of trivialisibility of a principal bundle.
Proposition 5. There exists a one-to-one correspondence between smooth (local) sections of a
principal bundle and its (local) trivialisations. In particular, a principal bundle is globally trivial-
isable iff it has a smooth global section.

2Recall that the inverse of a G-equivariant bijection is automatically G-equivariant.
9
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Proof: To a local section σ ∶ O Ð→ π−1P (O) ⊂ P, O ∈ T (B), we associate a local trivialisation

τσ ∶ π−1P (O) Ð→ O ×G ∶ pz→ (πP(p), ϕP(σ ○ πP(p), p))
with all the desired properties, i.e., (smoothly) invertible,

τ−1σ ∶ O ×GÐ→ π−1P (O) ∶ (x, g) z→ σ(x) ⊲ g ,
and G-equivariant,

τσ(p ⊲ g) ≡ (πP(p ⊲ g), ϕP(σ ○ πP(p ⊲ g), p ⊲ g)) = (πP(p), ϕP(σ ○ πP(p), p ⊲ g))

= (πP(p), ϕP(σ ○ πP(p), p) ⋅ g) = (πP(p), ϕP(σ ○ πP(p), p)) ⊲ g ≡ τσ(p) ⊲ g .

Conversely, to a local trivialisation τ ∶ π−1P (O)
≅ÐÐ→ O ×G, we associate a local section

στ ∶ O Ð→ π−1P (O) ∶ xz→ τ−1(x, e) .
The two assignments are mutually inverse. Indeed, on the one hand,

∀x∈O ∶ στσ(x) = τ−1σ (x, e) = σ(x) ⊲ e = σ(x) ,
and on the other—

∀p∈π−1
P
(O) ∶ τστ (p) = (πP(p), ϕP(στ ○ πP(p), p)) = (πP(p), ϕP(τ−1(πP(p), e), p)) ,

but since

p ≡ τ−1(πP(p), e) ⊲ ϕP(τ−1(πP(p), e), p) ,
so that

τ(p) = τ(τ−1(πP(p), e) ⊲ ϕP(τ−1(πP(p), e), p)) = τ ○ τ−1(πP(p), e) ⊲ ϕP(τ−1(πP(p), e), p)

= (πP(p), e) ⊲ ϕP(τ−1(πP(p), e), p) = (πP(p), ϕP(τ−1(πP(p), e), p)) ,
we arrive at

τστ (p) = τ(p) .
□

Remark 3. It deserves to be stressed that the statement in the above proposition distinguishes
principal bundles among fibre bundles. In order to appreciate this constatation, it suffices to remark
that every vector bundle admits a global section, to wit, the zero section, but not every one is
globally trivialisable, see, e.g., the tangent bundle of the unkempt S2.

We conclude our traverse across rudiments of the theory of principal bundles with a derivation
of a convenient local presentation of those morphisms of principal bundles which cover the identity
diffeomorphism f = idB of the base and preserve the structure group.
Theorem 1 (The Clutching Theorem for Vertical Morphisms of Principal Bundles). Every mor-
phism (Φ, idB , idG) between principal bundles ((Pα,B,G, πPα), rα), α ∈ {1,2} with the respec-
tive local trivialisations ταi ∶ π−1Pα

(Oi)
≅ÐÐ→ Oi ×G (associated with a common trivialising cover

O = {Oi}i∈I) and transition maps gαij ∶ Oij Ð→ G), described by the commutative diagram

P1
Φ //

πP1

��

P2

πP2

��
B

idB

B

,

10
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gives rise to a family {hi}i∈I of smooth maps

hi ∶ Oi Ð→ G , i ∈ I
with the property

∀x∈Oij ∶ g2ij(x) = hi(x) ⋅ g1ij(x) ⋅ hj(x)−1 .(6)

Conversely, every such family determines uniquely a morphism of the above kind.

Proof: Assume given a morphism (Φ, idB , idG). The map Φ is fixed uniquely by the values it
takes on the flat unital sections σ1

i ≡ στ1
i
, i ∈ I induced from the local trivialisations of its domain

along the lines of Prop. 5. Indeed, in virtue of the assumed G-equivariance of the trivialisations,
every point in the fibre P1x can be written as

τ1−1i (x, g) = σ1
i (x) ⊲ g ,

and so, by the assumed G-equivariance of Φ, we obtain

Φ(τ1−1i (x, g)) = Φ(σ1
i (x) ⊲ g) = Φ(σ1

i (x)) ⊲ g .
We now define the manifestly smooth maps

hi ∶= pr2 ○ τ2i ○Φ ○ σ1
i ∶ Oi Ð→ G

and check that they obey the anticipated gluing law: On one hand,

τ2−1j (x,hj(x)) = τ2−1i (x, g2ij(x) ⋅ hj(x)) ,
and on the other—

τ2−1j (x,hj(x)) = Φ ○ σ1
j (x) ≡ Φ(τ1−1j (x, e)) = Φ(τ1−1i (x, g1ij(x))) = Φ(τ1−1i (x, e)) ⊲ g1ij(x)

≡ Φ ○ σ1
i (x) ⊲ g1ij(x) = τ2−1j (x,hi(x)) ⊲ g1ij(x) = τ2−1j (x,hi(x) ⋅ g1ij(x)) ,

which altogether reproduces the postulated relation owing to the bijectivity of the local triviali-
sations

Let, next, ((Pα,B,G, πPα), rα), α ∈ {1,2} be principal bundles with the respective local triv-
ialisations ταi ∶ π−1Pα(Oi)

≅ÐÐ→ Oi × G and transition maps gαij ∶ Oij Ð→ G. Given a family
hi ∶ Oi Ð→ G of maps, as described in the statement of the theorem, we define locally smooth
maps

Φi ∶ π−1P1(Oi) Ð→ π−1P2(Oi) ∶ τ1−1i (x, g) z→ τ2−1i (x,hi(x) ⋅ g) .
These satisfy, at every point (x, g) ∈ Oij ×G, the identities

Φj(τ1−1i (x, g)) = Φj(τ1−1j (x, g1ji(x) ⋅ g)) = τ2−1j (x,hj(x) ⋅ g1ji(x) ⋅ g)

= τ2−1i (x, g2ij(x) ⋅ hj(x) ⋅ g1ji(x) ⋅ g) = τ2−1i (x,hi(x) ⋅ g) ≡ Φi(τ1−1i (x, g)) .
This implies that the Φi ar erestrictions of a globally smooth map

Φ ∶ P1 Ð→ P2 , Φ↾π−1
P1
(Oi) = Φi ,

manifestly fibre-preserving and G-equivariant (owing to commutativity of the left and right regular
actions of G on itself, and the assumed G-equivariance of the trivialisations). □

Our lightning tour d’horizon of the theory of principal bundles is crowned with the following
proposition—a straightforward consequence of (the constructive proof of) the above theorem.
Proposition 6. Let BunG(B) be the category of principal bundles with base B and structure
group G. Its subcategory

BunG(B)/B
composed of all objects of BunG(B) and those morphisms between them which cover the identity
diffeomorphism f = idB is a groupoid.

11
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Proof: In the light of Thm. 1, it is sufficient to carry out a proof in the local picture, in which an
arbitrary morphism Φ ∶ P1 Ð→ P2 covering f = idB is represented by a family of smooth maps
hi ∶ Oi Ð→ G, i ∈ I. By the same theorem, the corresponding family {h̃i ∶= Inv○hi}i∈I determines
a morphism P2 Ð→ P1, which inverts Φ by construction. □

3. The Ehresmann–Atiyah groupoid of P, and the Ehresmann bibundle

Weinstein’s clever case for Lie-groupoidal models of symmetry suggests that whatever steps we
take towards or within a field theory with a group-like symmetry gauged, we should always seek
to retrace these steps in a formulation amenable to a direct generalisation to the Lie-groupoidal
setting. The obvious point of departure of any such rephrasal is the standard ‘groupoidification’
of a Lie group G, in which the latter is viewed as a Lie groupoid G //// ● over a singleton ●.

In the present setting, in which we are dealing with an ‘auxiliary’ object (P,B,G, πP), there
are two basic structures that are to be reformulated, to wit,

● the defining global action r of the symmetry agent G on the space of local gauges P, and
● base-dependent automorphisms of the latter space P, among which those preserving fi-

bres (i.e., covering the identity diffeomorphism of the base) will ultimately model auto-
equivalences of a physical theory with the global symmetry G rendered local.

Being base-independent and fibre-preserving, the former are simpler to grasp, and so we begin
our reformulation from them. The very general idea is to replace the original (right) action of the
symmetry group G with an action of the symmetry groupoid G //// ●, and to put P, accordingly,
in the rôle of a (right) module of the latter Lie groupoid, as introduced in Def. IV.75. In what
follows, we denote the symmetry groupoid as G⃗ for the sake of brevity.
Proposition 7. Every principal bundle (P,B,G, πP), r) carries a canonical structure of a (right)
G⃗-module, with momentum

µP ≡ ● ∶ P // ●
and action

ϱP ≡ r ∶ PµP
×tMor(G⃗) ≡ P ×GÐ→ P

The action preserves the fibres of the base projecion πP and the composite map

(pr1, ϱP) ∶ PµP
×tMor(G⃗) Ð→ PπP

×πP
P

is a diffeomorphism.

Proof: A trivial translation of the formerly established properties of P. □

The above exercise leads us to the following abstraction:
Definition 4. [Moe91, Sec. 1.2] Let G //// M be a Lie groupoid. A right principal G -bundle is
a quintuple (P̆,Σ, πP̆, µ, ϱ) composed of a pair of smooth manifolds:

● the total space P̆ of the bundle;
● its base Σ,

and a triple of smooth maps:
● a surjective submersion πP̆ ∶ P̆→ Σ, termed the bundle projection;
● the moment map µ ∶ P̆→M ;
● the action (map) ϱ ∶ P̆µ×tG → P̆

with the following properties:
(PGr1) (P̆, µ, ϱ) is a right G -module space;

12



Principality (DDD ’24/25 VI [rrS])

(PGr2) πP̆ is G -invariant in the sense made precise by the following commutative diagram (in
which pr1 is the canonical projection)

P̆µ×tG
ϱ //

pr1

��

P̆

πP̆

��
P̆ πP̆

// Σ

;

(PGr3) the map

(pr1, ϱ) ∶ P̆µ×tG Ð→ P̆πP̆
×πP̆

P̆ ≡ P̆[2], (p, g) z→ (p, p ◂ g)
is a diffeomorphism, so that G acts freely and transitively on πP̆-fibres. The smooth inverse
of (pr1, ϱ) takes the form

(pr1, ϱ)−1 =∶ (pr1, ϕP̆) , ϕP̆ ∶ P̆
[2] Ð→ G

and ϕP̆ is called the division map.

The Lie groupoid G is termed the structure groupoid of P̆.
We shall represent a right principal G -bundle by the simplified (non-commutative) diagram

P̆

πP̆

����

µ

  

MorGr

w�
Σ ObGr

,(7)

in which the additional structure is implicit.
Let (P̆A,Σ, πP̆A

, µA, ϱ
A), A ∈ {1,2} be a pair of right principal G -bundles over a common base

Σ. A morphism3 between the two bundles is a morphism (Θ, IdGr) between the corresponding
right G -modules (P̆A, µA, ϱ

A) which maps πP̆1
-fibres to πP̆2

-fibres.
Left principal G -bundles (P̆,Σ, πP̆, µ, λ) (and morphisms between them) are defined analo-

gously. The corresponding diagrams take the self-explanatory form

MorGr

�'

P̆

πP̆

����

µ

~~
ObGr Σ

,

Customarily, principal G -bundles are taken to be right G -modules, and so whenever the term is
used without a qualifier, it is to be understood that we are dealing with a right principal G -bundle.
Remark 4. It is worth noting that the definition of a principal G -bundle can be viewed as a
structural relation between three Lie groupoids. Indeed, we may rephrase it as a statement of
existence, for a given surjective submersion πP̆ ∶ P̆→ Σ and a (smooth) map µ ∶ P̆→M , of

● an action Lie groupoid P̆µ⋊t G with P̆ as the object manifold and P̆µ×t G as the arrow
manifold, with pr1 as the source map, a smooth map ϱ ∶ P̆µ×t G → P̆ as the target map,
(idP̆, Id ○ µ) as the unit map, (ϱ, Inv ○ pr2) as the inverse map, and (ϱ(p, g), h).(p, g) =
(p, g.h) as the multiplication map,
● a Lie-groupoid morphism ΦP̆ ∶ PairΣ(P̆) → Gr with µ as the object component and a

smooth map ϕP̆ ∶ P̆ ×Σ P̆→ G as the morphism component,

such that the Lie-groupoid morphism ϱ̃ ∶ P̆µ⋊tG → PairΣ(P̆), with the object component idP̆ and
the morphism component (pr1, ϱ), is invertible, with the inverse ϕ̃P̆ given by (idP̆ on objects, and)

3In Ref. [MM03, Sec. 5.7], these morphisms were termed “equivariant maps”.
13
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(pr1, ϕP̆) on morphisms. Thus, the entire information on P̆ is neatly encoded in the following
commutative diagram in the category of Lie groupoids:

P̆µ⋊tG

ϱ̃

��

µ̂

��
PairΣ(P̆)

ΦP̆

//

ϕ̃P̆≡ϱ̃
−1

??

Gr

,

in which the Lie-groupoid morphism µ̂ has µ as the object component and pr2 as the morphism
component.
Proposition 8. Let (P̆,Σ, πP̆, µ, ϱ) be a principal G -bundle. The orbispace

P̆//G = { p ◂ G ∣ p ∈ P̆ }
is a smooth manifold, canonically diffeomorphic with Σ,

P̆//G ≅ Σ .

Proof: The orbispace is a quotient of P̆ by an equivalence relation on P̆ ∋ p1, p2 defined as

p1 ∼ p2 ⇐⇒ ∃g∈G ∶ p2 = p1 ◂ g .
Its graph takes the form

(pr1, ϱ)(P̆µ×tG ) = P̆[2] ⊂ P̆ × P̆ ,

and so it is an embedded submanifold in P̆×P̆ (as a fibred square of P̆). Furthermore, since (pr1, ϱ)
is closed (as a homeomorphism), it is also closed. Hence, by Godement’s Criterion (Thm. I.21.),
the orbispace is smooth and the canonical projection

π̆∼ ∶ P̆Ð→ P̆//G ∶ pz→ p ◂ G

is a surjective submersion.
The proof of the second part of the proposition develops along the lines of the reasoning pre-

sented in Rem. 2: We start with the manifestly smooth map

ι ∶ P̆//G Ð→ Σ ∶ p ◂ G z→ πP̆(p) ,
and look for its smooth inverse. To this end, we consider an open cover OΣ = {Oi}i∈I of Σ whose
elements support the respective smooth sections σ̆i ∶ Oi Ð→ P̆ of the surjective submersion
πP̆.T́hese we employ in the definition of smooth local maps

ȷi ∶= π̆∼ ○ σ̆i ∶ Oi Ð→ P̆//G ,

subsequently proven to glue up to a globally smooth map

ȷ ∶ ΣÐ→ P̆//G , ȷ↾Oi
≡ ȷi .

Indeed, for any x ∈ Oij , we obtain the equality

ȷj(x) ≡ π̆∼(σ̆j(x)) = π̆∼(σ̆i(x) ◂ ϕP̆(σi(x), σj(x))) = π̆∼(σ̆i(x)) ≡ ȷi(x) .
Last, we check the identities

ι ○ ȷ = idΣ , ȷ ○ ι = idP̆//G
through the following direct computations:

(ι ○ ȷ)(x) ≡ ι(σ̆i(x) ◂ G ) ≡ πP̆(σ̆i(x)) = x ,
in which x ∈ Oi, and

(ȷ ○ ι)(p ◂ G ) ≡ ȷ(πP̆(p)) ≡ σ̆i(πP̆(p)) ◂ G = (p ◂ ϕP̆(p, σ̆i(πP̆(p)))) ◂ G = p ◂ G ,

in which p ∈ π−1
P̆
(Oi). □
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Thus, just to summarise, the defining action of the structure group G on (the total space of)
the principal bundle P is neatly captured by the diagram

P

πP

���� ��

G

~�
B ●

.(8)

Passing to B-dependent automorphisms of P, we recall Ex. II.36. in conjunction with Ex. IV.80.
to conclude that we should be looking at bisections of the pair groupoid Pair(P) covering those
of the base pair groupoid Pair(B), not any bisections, though, but those compatible with the
defining G-action on P, i.e., G-equivariant ones, where the relevant action on the arrow manifold
P ×P of the former pair groupoid is the diagonal one. Speaking in terms of the newly introduced
structure of a right G⃗-module on P, we readily see that we are after a refinement of the canonical
left Pair(P)-module structure on P, which commutes with the aforementioned right G⃗-module
structure. In order to rigorously pin down the refinement, we invoke
Proposition 9. Let (Mα, λα), α ∈ {1,2} be G-manifolds equipped with the respective free and
proper G-actions λα. Every G-equivariant map f12 ∈ C∞G (M1,M2) canonically induces a smooth
map

[f12] ∶ M1//GÐ→M2//G ∶ [m]∼1 z→ [f12(m)]∼2 ,
written in terms of the G-orbits [m]∼1 ≡ G ⊳(1) m and [f12(m)]∼2 ≡ G ⊳(2) f12(m) for m ∈M1.

Maps thus induced compose in a ‘functorial’ manner: Let (M3, λ3) be another G-manifold
endowed with a free and proper G-action λ3, and let f23 ∈ C∞G (M1,M2). Then,

[f23 ○ f12] = [f23] ○ [f12] .
Moreover, we have

[idM1] = idM1//G .

Proof: The map [f] is well-defined as

[f(g ⊳(1) m)]∼2 = [g ⊳(2) f(m)]∼2 ≡ [f(m)]∼2 ,
owing to the assumed G-equivariance of f .

Its smoothness follows from Thm. V.2., referred to the commutative diagram

M2

π∼2 // M2//G

M1

f

OO

π∼1
// M1//G

[f]

OO

,

in which
● π∼α ∶ Mα Ð→Mα//G ∶ mα z→ G ⊳(α) mα are the canonical quotient maps, both smooth

in virtue of Thm. I.21.;
● π∼1 is a surjective submersion by the same Thm. I.21.;
● π∼2 ○ f is smooth as a superposition of smooth maps.

The last part of the proposition follows straightforwardly from the definition of the induced
map. □

Using the above result (and invoking Eq. (4)), we may next associate a smooth map [β] ○ ι−1 ∶
B ≅ P//G Ð→ (P × P)//G. Here, the existence of the smooth quotient (P × P)//G is ensured by
the properness of the G-action on P × P, a property inherited from the same property of r. In
the next step, we note that all structure maps of Pair(P) are trivially G-equivariant, and so they
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also descend to the quotient (P×P,P)//G ≡ ((P×P)//G,P//G). Clearly, then, dividing out the G-
action gives rise to a new species of Lie groupoid: (P × P)//G // // B (upon identifying Σ ≡ P//G),
with structure maps [s], [t], [Id], [Inv] and [.]. Moreover, we readily see that a (G-equivariant)
bisection β ≡ (Φ, idP) ∈ BisecG(Pair(P)) necessarily satisfies

[s] ○ [β] = [s ○ β] = [idP] = idP//G
and

[t] ○ [β] = [t ○ β] ∈ [DiffG(P)] ⊂ Diff(Σ) .
Thus, G-equivariant bisections of Pair(P) (which automatically cover diffeomorphisms of B in
virtue of Prop. 9) induce bisections of (P × P)//G //// B. We shall have more to say about the
correpondence between the two groups of bisection later. Meanwhile, let us agree that the claim
for fame of our new Lie groupoid has been defended convincingly, and give it a name:
Definition 5. Let ((P,B,G, πP), r) be a principal bundle. The Ehresmann–Atiyah groupoid
(aka the gauge groupoid) of P is the Lie groupoid described by the diagram

At(P) ×B At(P) M // At(P) J // At(P) S //
T

// B

I

�� ,

that is—with arrow manifold

At(P) ∶= (P × P)//G
and structure maps

S ∶ At(P) Ð→ B ∶ [(p2, p1)] z→ πP(p1) , T ∶ At(P) Ð→ B ∶ [(p2, p1)] z→ πP(p2) ,

J ∶ At(P) Ð→ At(P) ∶ [(p2, p1)] z→ [(p1, p2)] ,

M ∶ At(P) ×B At(P) Ð→ At(P) ∶ ([(p3, p2)], [(p2, p1)]) z→ [(p3, p1)] ,
and

I ∶ B Ð→ At(P) ∶ σ z→ [(τ−1i (σ, e), τ−1i (σ, e)] ,
where σ ∈ Oi in the last definition.
Remark 5. The above object made its first appearance in Ehresmann’s seminal papers [Ehr50,
Ehr52] on principal bundles and theoir morphisms—there, it was called groupoïde associé. It
reappeared in Atiyah’s later work [Ati57] on connections.
The naturality of the object introduced above from the point of view of our physically motivated
considerations is emphasised in
Proposition 10. The Ehresmann–Atiyah groupoid of a principal bundle ((P,B,G, πP), r) carries
a canonical structure of a fibre-bundle object in the category of Lie groupoids, with total space
At(P) // // B, base Pair(B) and typical fibre G⃗. The base projection is given by the Lie-groupoid

morphism π with morphism component (T,S) ∶ At(P) Ð→ B ×B and object component idB ,
all captured by the diagram

G⃗
� � // At(P)

π

��
Pair(B)

.

Proof: Obvious. □
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Returning to the original challenge of encoding bundle automorphisms of P in a Lie-groupoidal
structure, we first introduce a useful abstraction.

Definition 6. Let GA
// // MA, A ∈ {1,2} be Lie groupoids. A (G1,G2)-bibundle is a manifold

P̂ which carries the structure of a left G1-module (P̂ , µ1, λ1 ≡ ▸) and that of a right G2-module
(P̂ , µ2, ρ2 ≡ ◂), such that the two actions commute and each moment map is invariant with respect
to the other action, i.e., we have, for all (g1, p, g2) ∈ G1s1×µ1 P̂µ2×t2 G2,

● (g1 ▸ p) ◂ g2 = g1 ▸ (p ◂ g2);
● µ1(p ◂ g2) = µ1(p);
● µ2(g1 ▸ p) = µ2(p).

Whenever (P̂ ,M2, µ2, µ1, λ1) is a (left) principal G1-bundle (with base M2 ≅ P̂ /G1, by Godement’s
Criterion), and (P̂ ,M1, µ1, µ2, ρ2) is a (right) principal G2-bundle (with base M1 ≅ P̂ /G2, by the
same ‘criterion), we call P̂ a (bi)principal (G1,G2)-bibundle, and depict it by the following
W -diagram:

G1

��

P̂

µ1

��

µ2

��

G2

��
M1 M2

.(9)

Our hitheto findings are now neatly summarised in

Theorem 2. Every principal bundle ((P,B,G, πP), r) carries a canonical structure of a biprin-
cipal (At(P),G)-bibundle captured by the W-diagram

At(P)

��

P

πP

��

●

��

G

�

B ●

.

Proof: The only thing which remains to be proven is the existence of a structure of a left principal
At(P)-bundle on P, with the corresponding (left) action commuting with that of the groupoid G⃗
from the right, encoded by Diag. 8. The action in question is defined straighforwardly as

λP ∶ At(P)S×πP
PÐ→ P ∶ ([(p2, p1)], p1) z→ p2 ,

and so smooth by quasi-universality of the submersion π∼ ∶ P × P Ð→ At(P) ∶ (p2, p1) Ð→
[(p2, p1)] (itself smooth due to the properness of the G-action divided out, as discussed earlier).
It trivially preserves the single ●-fibre P. Equally trivially, we establish the smooth inverse of the
map

(λP,pr2) ∶ At(P)S×πP
PÐ→ P●×●P ≡ P × P ∶ ([(p2, p1)], p1) z→ (p2, p1)

in the form

(λP,pr2)−1 ∶ P × PÐ→ At(P)S×πP
P ∶ (p2, p1) z→ ([(p2, p1)], p1) ,

from which we read off the (smooth) division map ϕP = π∼. □

Remark 6. The strucure of the biprincipal (At(P),G)-bibundle on P was first contemplated by
none other than Charles Ehresmann in [Ehr50, Ehr52].
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