
ASSOCIATIONS IN ACTION, & THE TRIDENT
(DDD ’24/25 VII, VIII & IX [RRS])

Figure 1. Plato and Aristotle, the Ur-fathers of the idea of association through a
(convergent) sequence of actions—here, depicted in a fresco by Raffaello Sanzio da
Urbino from 1511, with the title “Scuola di Atene” (Stanze di Raffaello, Palazzo
Apostolico, Vaticano). Accompanied by a silver coin of the Wise from the Xth or
XIth century.
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In the last lecture, a geometric object was introduced, which we heralded as a model of a ‘space
of local (observation/description) frames’ P over the spacetime B of a field theory with a global
symmetry (so far, modelled solely on a Lie-group action λ ∶ G Ð→ Diff(M)) rendered local, or
gauged. Below, we employ it, as a fundamental substrate, in a methodical construction of two
more physically (more evidently) relevant geometric entities, to wit: a ‘space of symmetry trans-
formations between the local frames’ and a ‘space of fields amenable to observation/description
in the local frames’, the latter admitting an intuitively understandable action of the former—to
be locally modelled on λ. In so doing, we shall justify the Homeric description of P and the ex-
tensive attention devoted to it in our hitherto considerations. Both constructions shall be sought
after, as was P, in the category Bun(B) of fibre bundles over spacetime B. Moreover, physically
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motivated operations on them, such as, e.g., a ‘transformation between frames’, and composition
of such operations shall be internalised in the corresponding slice category Bun(B)/B as long as
they represent actions to be performed by each observer (as represented by a point in B) sepa-
rately within his ‘space of observations/descriptions’ (as represented by the correponding fibre of
the relevant bundle). We shall also, whenever possible, formulate our findings in a manner which
emphasises the groupoidal underpinning of our constructions and admits a natural -oïdification,
or—more generally—categorification.

Secretely, our construction—essentially based on The Quotient Manifold Theorem (or, more
generally, on Godement’s Criterion)—can be seen as a natural field-theoretic avatar (or a Yonedian
sample over a given spacetime) of a universal construction of the so-called homotopy quotient,
i.e., a homotopy model of the symmetry-orbispace M//G of the configuration space of the field
theory under consideration. This construction plays a prime rôle in the modelling of differential
geometry (or, at any rate, of the associated homotopically stable structures—such as cohomology
or its higher-geometric realisations) of the said orbispace—this is the context in which it was first
conceived by Henri Cartan in [Car50], and subsequently elaborated and popularised by Émile
Borel, whence its name: the Cartan–Borel model (or mixing construction), cp. [Tu20].

1. Technical motivation & warm-up

The reconstruction of a smooth distribution, over a given smooth base B, of objects with
a fixed common isotype M from the set of (B-)local distributions of frames of description (or
coordinatisation) of M , related by an action of a symmetry structure (e.g., a group), and that in
a way which encodes the freedom of the local choice of a representative of a symmetry class (of
frames), has an elementary prototype, with a simple and helpful linear-algebraic intuition behind
it: the reconstruction of a vector bundle V over B from its frame bundle FGLV, which we consider
below as a conceptual and technical base for subsequent abstraction.

We begin our reconstruction by introducing the manifestly well-defined and smooth evaluation
map

êv ∶ FGLV ×K×r Ð→ V ∶ ((βx, x), v) z→ βx(v) ∈ Vx .

This map is constant on orbits of the action

ẽv ∶ GL(r;K) × (FGLV ×K×r) Ð→ FGLV ×K×r ∶ (χ, ((βx, x), v)) z→ ((βx ○ χ−1, x), χ(v)) ,
expressed in terms of the natural (defining) action of the group GL(r;K) on K×r,

ev ∶ GL(r;K) ×K×r Ð→ K×r ∶ (χ, v) z→ χ(v) .
This implies that êv descends to the quotient manifold (FGLV ×K×r)/GL(r;K), the latter being
defined relative to the action ẽv. Smoothness of the quotient manifold is ensured by the reasoning
from Rem. VI.2., based on Thm. I.21. In other words, êv determines a map

[êv] ∶ (FGLV ×K×r)/GL(r;K) Ð→ V
(1)

∶ [((βx, x), v)] z→ êv((βx, x), v) ≡ βx(v)(2)

which closes the following commutative diagram:

V

FGLV ×K×r π∼
//

êv

66

(FGLV ×K×r)/GL(r;K)

[êv]

OO

.

The canonical (orbit) projection π∼ in this diagram is—in virtue of Thm. I.21.—a submersion,
and so, by Thm. V.2., smoothness of the induced map [êv] is implied by the same property of êv.
It is also strightforward to see that a restriction of the map to an arbitrary fibre (IsoK(K×r,Vx)×
K×r)/GL(r;K), x ∈ B is a bijecion. Indeed, let us fix a basis β∗x ∈ IsoK(K×r,Vx) and consider the
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set S ∶= { ((β∗x, x), v) ∣ v ∈ K×r }. Orbits of any two of its elements, GL(r;K) ⊳ ((β∗x, x), v1)
and GL(r;K) ⊳ ((β∗x, x), v2), either coincide with one another, or are disjoint (as classes of an
equivalence relation). The former happens iff

((β∗x, x), v2) ∈ GL(r;K) ⊳ ((β∗x, x), v1)

⇐⇒ ∃χ∈GL(r;K) ∶ ((β∗x, x), v2) = ((β∗x ○ χ−1, x), χ(v1)) ⇐⇒ ( χ = idK×r ∧ v2 = v1 ) ,
and so different elements of S belong to disjoint orbits. Hence, the fibre (IsoK(K×r,Vx)×K×r)/GL(r;K)
covers the corresponding fibre Vx. It now remains to check injectivity of [êv]. To this end, consider
implications of the equality

β1
x(v1) ≡ [êv]([((β1

x, x), v1)]) = [êv]([((β2
x, x), v2)]) ≡ β2

x(v2) .
The latter is equivalent to

v2 = β2−1
x ○ β1

x(v1) ,
which, in turn, infers

v2 ∈ GL(r;K) ⊳ v1 ,
and so also

((β2
x, x), v2) = ((β1

x ○ (β2−1
x ○ β1

x)
−1
, x), β2−1

x ○ β1
x(v1)) ∈ GL(r;K) ⊳ ((β1

x, x), v1) .
Thus, we establish the identity

[((β1
x, x), v1)] = [((β2

x, x), v2)] ,
which shows injectivity of [êv]. Altogether, then, we have a smooth bijection. We shall next
construct its smooth inverse. For this purpose, we employ local trivialisations τi ∶ π−1FGLV(Oi)

≅ÐÐ→
Oi × GL(r;K), i ∈ I of the frame bundle, associated with an open cover {Oi}i∈I . In virtue of
Prop. VI.3., these induce local sections

σi ∶ Oi Ð→ FGLV ∶ xz→ τ−1i (x, e) ≡ (βi(x), x) ∈ IsoK(K×r,Vx) × {x} ,
where the field of bases βi depends (locally) smoothly on the point in Oi ⊂ B. We readily convince
ourselves that a map locally (over Oi ∋ x) given by

Σi↾Vx
∶ Vx Ð→ (IsoK(K×r,Vx) ×K×r)/GL(r;K) ∶ ν z→ [((βi(x), x), βi(x)−1(ν))]

is an inverse of [êv] (a local one), since

Σi ○ [êv]([((βx, x), v)]) = Σi ○ βx(v) = [((βi(x), x), βi(x)−1 ○ βx(v))]

≡ [((βx ○ (βi(x)−1 ○ βx)
−1
, x), βi(x)−1 ○ βx(v))] = [((βx, x), v)]

and, for ν ∈ Vx arbitrary,

[êv] ○Σi(ν) = [êv]([((βi(x), x), βi(x)−1(ν))]) = βi(x)(βi(x)−1(ν)) = ν .
Last, we check that the local maps Σi are restrictions (to the respective elements π−1V (Oi) of
an open cover of the total spce V) of a globally smooth map. For that, we first need to derive
the transformation rule that relates the local choices of basis βi. Let gij ∶ Oij Ð→ GL(r;K) be
the transition maps for the formerly fixed local trivialisations FGLV, i.e., for every x ∈ Oij and
χ ∈ GL(r;K),

τi ○ τ−1j (x,χ) = (x, gij(x) ○ χ) .
We then calculate

(βj(x), x) ≡ τ−1j (x, idK×r) = τ−1i (x, gij(x)) = τ−1i (x, idK×r) ⊲ gij(x) = (βi(x), x) ⊲ gij(x)

≡ (βi(x) ○ gij(x), x) ,
so that

βj(x) = βi(x) ○ gij(x) ,
3
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whence we readily obtain, for ν ∈ Vx, x ∈ Oij arbitrary, the desired identity

Σj(ν) = [((βj(x), x), βj(x)−1(ν))] = [((βi(x) ○ gij(x), x), gij(x)−1 ○ βi(x)−1(ν))]

= [((βi(x), x), βi(x)−1(ν))] ≡ Σi(ν) .
Our hitherto considerations enable us to write out directly local trivialisations

[τi] ∶ (π−1FGLV(Oi) ×K×r)/GL(r;K) ≅ÐÐ→ Oi ×K×r ∶ [((βx, x), v)] z→ (x,βi(x)−1 ○ βx(v)) ,
alongside with their inverses

[τi]−1 ∶ Oi ×K×r
≅ÐÐ→ (π−1FGLV(Oi) ×K×r)/GL(r;K) ∶ (x, v) z→ [((βi(x), x), v)] ,

and thus identify the structure of a fibre bundle on the quotient manifold (FGLV×K×r)/GL(r;K).
It is clearly a vector bundle with base B and base field K. Note, parenthetically, that the transition
maps for the above trivialisations take, for (x, v) ∈ Oij ×K×r arbitrary, the form

[τi] ○ [τj]−1(x, v) = [τi]([((βj(x), x), v)]) = (x,βi(x)−1 ○ βj(x)(v)) = (x, gij(x)(v)) ,
i.e., they are identical to those of V. Due to its manifest K-linearity, the map [êv] now becomes
a vector-bundle isomorphism

[êv] ∶ (FGLV ×K×r)/GL(r;K) ≅ÐÐ→ V .

Based on the above and earlier considerations, we may now articulate simple yet structural
Proposition 1. There is a one-to-one correspondence between (local) sections (and so also (local)
trivialisations) of the frame bundle of a vector bundle and (local) trivialisations of the latter.

Proof: An arbitrary local section σ ∶ O Ð→ π−1FGLV(O) ⊂ FGLV, O ∈ T (B) gives rise to a map

τσ ∶ π−1V (O) Ð→ O ×K×r ∶ v z→ (πV(v), (σ ○ πV)(v)−1(v)) ,
manifestly K-linear and smooth, with an inverse

τ−1σ ∶ O ×K×r Ð→ π−1V (O) ∶ (x,V ) z→ σ(x)(V ) ,
which is also smooth (and K-linear). The stated properties permit us to identify τσ as a local
trivialisation of V associated with the local section σ of the frame bundle.

Reversing the reasoning, we associate to any trivialisation τ ∶ π−1V (O)
≅ÐÐ→ O ×K×r a (local)

section

στ ∶ O Ð→ π−1FGLV(O) ∶ xz→ τ−1(x, ⋅) .
Next, we verify that the two maps written out above are each other’s inverses. Indeed, we establish
the equality

∀(x,V )∈O×K×r ∶ στσ(x)(V ) = τ−1σ (x,V ) = σ(x)(V ) ,
from which we derive the identity

στσ = σ .

Furthermore,

∀v∈π−1V (O)
∶ τστ (v) = (πV(v), (στ ○ πV)(v)−1(v)) = (πV(v), τ−1(πV(v), ⋅)

−1(v))

≡ τ ○ τ−1(πV(v), τ−1(πV(v), ⋅)
−1(v)) = τ(v) ,

whence

τστ = τ .
□

and
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Proposition 2. Every family of local trivialisations of the frame bundle of a vector bundle induces
a family of local trivialisations of the vector bundle (associated with the same family of open sets
in their common base) with the same transition maps.

Proof: Let (V,B,K×r, πV) be a vector bundle, and let (FGLV, B,GL(r;K), πFGLV) be its frame

bundle. Fix two local trivialisations τi ∶ π−1FGLV(Oi)
≅ÐÐ→ Oi ×GL(r;K), Oi ∈ T (B), i ∈ {1,2} of

the latter bundle, with a nonempty intersection of domains, O1∩O2, over which we find transition
maps g12 ∶ O1 ∩O2 Ð→ GL(r;K). To each of the two trivialisations, associate a local section, as
in Prop. V.3.,

σi ∶ Oi Ð→ π−1FGLV(Oi) ⊂ FGLV ∶ y z→ τ−1i (y,1n) ,
and subsequently use them to construct the respective local trivialisations of V according to the
prescription given in the proof of Prop. 1,

τσi ∶ π−1V (Oi)
≅ÐÐ→ Oi ×K×r ∶ v z→ (πV(v), (σi ○ πV)(v)−1(v)) , i ∈ {1,2} .

That the the transition map between these is the desired one is readily confirmed in a direct
calculation, carried out for arbitrary (y, V ) ∈ O12 ×K×r,

τσ1 ○ τ−1σ2
(y, V ) = τσ1

(σ2(y)(V )) = (πV(σ2(y)(V )), (σ1 ○ πV)(σ2(y)(V ))
−1(σ2(y)(V )))

= (y, σ1(y)−1 ○ σ2(y)(V )) .
Taking into account the following chain of equalities:

σ2(y) ≡ τ−12 (y,1n) = τ−11 (y, g12(y)) = τ−11 (y,1n) ⊲ g12(y) ≡ τ−11 (y,1n) ○ g12(y) ≡ σ1(y) ○ g12(y) ,
we reproduce the anticipated result

τσ1 ○ τ−1σ2
(y, V ) = (y, σ1(y)−1 ○ σ1(y) ○ g12(y)(V )) ≡ (y, g12(y)(V )) .

□

2. The symmetry-module object in the category of spacetime bundles

We are now fully prepared—both conceptually and technically—to carry out a systematic con-
struction of the two spaces of immediate physical interest: a ‘space of fields amenable to observa-
tion/description in the local frames’ and a ‘space of symmetry transformations between the local
frames’. As it happens, both arise from a procedure of association of a G-manifold to the under-
lying ‘space of local observation/description frames’ P, which we now abstract from the above
motivating considerations.
Definition 1. Let (P,B,G, πP) be a principal bundle, and M – a manifold with a smooth (left)
action λ ∶ G ×M Ð→ M of the Lie group G. A bundle associated with P by λ is a fibre
bundle

(P ×λ M,B,M,πP×λM)
composed of

● the total space P ×λ M ≡ (P ×M)/G given by the quotient manifold determined by the
action of Eq. (VI.5);
● the base projection

πP×λM ∶ P ×λ M Ð→ B ∶ [(p,m)] z→ πP(p) .

Here, local trivialisations τi ∶ π−1P (Oi)
≅ÐÐ→ Oi ×G, i ∈ I of the principal bundle P associated

with an open cover {Oi}i∈I of the base B induce local trivialisations

[τi] ∶ π−1P×λM(Oi)
≅ÐÐ→ Oi ×M ∶ [(p,m)] z→ (πP(p), λpr2○τi(p)(m)) ,
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with the ensuing transition maps

[τi] ○ [τj]−1 ∶ Oij ×M ↺ ∶ (x,m) z→ (x,λgij(x)(m)) .
Upon fixing (arbitrarily) a point x ∈ B, we choose (also arbitrarily) p∗ ∈ (P)x. Diffeomorphisms

[p∗]λ ∶ M
≅ÐÐ→ (P ×λ M)x ∶ mz→ [(p∗,m)] ,

with inverses

[p∗]−1λ ∶ (P ×λ M)x
≅ÐÐ→M ∶ [(p,m)] z→ λϕP(p∗,p)(m)

and the obvious property

∀g∈G ∶ [p∗ ⊲ g]λ = [p∗]λ ○ λg ,(3)

are called fibre-modelling isomorphisms. These induce fibre-transport isomorphisms

[p2, p1]λ ≡ [p2]λ ○ [p1]−1λ ∶ (P ×λ M)πP(p1)
≅ÐÐ→ (P ×λ M)πP(p2) ∶ [(p,m)] z→ [(p2, λϕP(p1,p)(m))] ,

defined for all pairs (p1, p2) ∈ P×2.
For any pair (P ×λα Mα,B,Mα, πP×λαMα), α ∈ {1,2} of bundles associated with the same

principal bundle (P,B,G, πP), we also define the associated-bundle invariant given by the
bundle morphism

(Φ, idB) ∶ P ×λ1 M1 Ð→ P ×λ2 M2

with the fundamental property expressed by the commutative diagram (written for any p1, p2 ∈ P)

(P ×λ1 M1)πP(p1)

[p2,p1]λ1 //

Φ↾(P×λ1
M1)πP(p1)

��

(P ×λ1 M1)πP(p2)

Φ↾(P×λ1
M1)πP(p2)

��
(P ×λ2 M2)πP(p1) [p2,p1]λ2

// (P ×λ2 M2)πP(p2)

.

Remark 1. The existence of the structure of a smooth manifold on the space of orbits P ×λ M
of the action λ̃ is a direct consequence of Thm. I.21., which can be invoked in the present context
in virtue of Cor. VI.1. The smoothness of the base projection πP×λM is readily inferred from
Thm. V.2. upon noting that the projection closes the commutative diagram

B

P ×M π∼
//

πP○pr1

77

P ×λ M

πP×λM

OO

,

in which π∼ is a surjective submersion (by the very same Thm. I.21.), and πP ○ pr1 is manifestly
smooth. As the latter map is also submersive, this property is inherited by πP×λM , a fact that can
also be demonstrated directly by applying the tangent functor T to the above diagram.

We shall, next, examine the local trivialisations, beginning with a check of their well-definedness.
For that, we must verify that the value taken by the map [τi] on the class [(p,m)] does not depend
on the choice of the representative thereof. Thus, we compute

(πP(p ⊲ g), λ(pr2 ○ τi(p ⊲ g), λ(g−1,m))) = (πP(p), λ(pr2 ○ τi(p) ⋅ g, λ(g−1,m)))

= (πP(p), λ(pr2 ○ τi(p) ⋅ g ⋅ g−1,m)) = (πP(p), λ(pr2 ○ τi(p),m)) .
Furthermore, since maps

τ i ∶ π−1P (Oi) ×M Ð→ Oi ×M ∶ (p,m) z→ (πP(p), λpr2○τi(p)(m)) , i ∈ {1,2}
6
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are manifestly smooth, and related to [τi] through the commutative diagram

Oi ×M

π−1P (Oi) ×M π∼
//

τ i

66

π−1P×λM(Oi)

[τi]

OO

,

in which the canonical projection π∼ is smooth by Thm. I.21. and Cor. VI.1, we conclude that also
the maps [τi] are smooth in virtue of Thm. V.2. There is no doubt about smoothness (also local)
of their inverses

[τi]−1 ∶ Oi ×M Ð→ π−1P×λM(Oi) ∶ (x,m) z→ [(τ−1i (x, e),m)] .
In all the hitherto considerations, we have implicitly assumed well-definedness of the definition of
the maps [τi] and [τi]−1, and that calls for a separate verification—the latter justifies a posteriori
our identification of the typical fibre

π−1P×λM({πP×λM([(p,m)])}) ≅M , [(p,m)] ∈ P ×λ M

of the fibre bundle under reconstruction. We readily demonstrate the desired properties: Thus, for
any (x,m) ∈ Oi ×M , we have

[τi] ○ [τi]−1(x,m) = [τi]([(τ−1i (x, e),m)]) = (πP ○ τ−1i (x, e), λ(pr2 ○ τi ○ τ−1i (x, e),m))

= (x,λ(e,m)) = (x,m) ,
and we obtain, for [(p,m)] ∈ P ×λ M, p = τ−1i (x, g),

[τi]−1 ○ [τi]([(p,m)]) = [τi]−1(πP(p), λ(pr2 ○ τi(p),m)) = [(τ−1i (πP(p), e), λ(pr2 ○ τi(p),m))]

= [(τ−1i (x, e), λ(g,m))] = [(τ−1i (x, e) ⊲ g,m)] = [(τ−1i (x, g),m)] ≡ [(p,m)] .
Finally, we calculate

[τi] ○ [τj]−1(x,m) ≡ [τi] ○ [τj]−1(πP ○ τ−1j (x, e), λ(pr2 ○ τj(τ−1j (x, e)),m)) = [τi]([τ−1j (x, e),m])

= (x,λ(pr2 ○ τi ○ τ−1j (x, e),m)) = (x,λ(pr2(x, gij(x)),m)) ≡ (x,λ(gij(x),m)) .
The construction of the associated bundle is, therefore, well-defined.

Let us, next, consider the map

[p∗]−1λ ∶ (P ×λ M)x Ð→M ∶ [(p,m)] z→ λϕP(p∗,p)(m) , p∗ ∈ (P)x .
It is well-defined as for any representative (p̃, m̃) ∈ [(p,m)] we get

λϕP(p∗,p̃)(m̃) = λϕP(p∗,p) ○ λϕP(p,p̃)(m̃) = λϕP(p∗,p)(m) .
Moreover, it is bijective because of the implication

[p∗]−1λ ([(p2,m2)]) = [p∗]−1λ ([(p1,m1)]) ⇐⇒ m2 = λϕP(p2,p1)(m1)

Ô⇒ [(p2,m2)] = [(p2, λϕP(p2,p1)(m1))] = [(p2 ⊲ ϕP(p2, p1),m1)] = [(p1,m1)] ,
showing injectivity of [p∗]−1λ , and because any point m ∈M may be written as

m = [p∗]−1λ ([(p∗,m)]) ,
which testifies to the map’s surjectivity, simultaneously indicating its inverse

[p∗]λ ∶ M Ð→ (P ×λ M)x ∶ mz→ [(p∗,m)] .
Indeed, the map [p∗]λ satisfies the identities

[p∗]−1λ ○ [p∗]λ(m) = λϕP(p∗,p∗)(m) = λe(m) =m,

[p∗]λ ○ [p∗]−1λ ([(p,m)]) = [(p∗, λϕP(p∗,p)(m))] ≡ [(p∗ ⊲ ϕP(p∗, p),m)] = [(p,m)] .
7
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It is manifestly smooth as a superposition of the immersion (p∗, idM) ∶ M Ð→ {p∗} ×M ⊂
(P)πP(p∗) ×M and the surjective submersion π(P×M)/G ∶ P ×M Ð→ (P ×M)/G. Smoothness of
[p∗]−1λ , on the other hand, follows from Thm. V.2. referred to the commutative diagram

M

(P)x ×M
π∼↾(P)x×M

//

λ(ϕP(p∗,pr1),pr2)

55

(P ×λ M)x

[p∗]−1λ

OO

,

with a surjective submersion on the horizontal edge. The construction of the diffeomorphism
[p∗]−1λ thus provides us with an independent proof of the identification of the typical fibre of the
associated bundle advanced above.
Example 1.

(1) A vector bundle V (of rank n) can be viewed/reconstructed as a bundle associated with
the principal bundle of frames FGLV by evaluation,

V ≅ FGLV ×ev K×n .
(2) The adjoint bundle

(AdP ≡ P ×Ad G,B,G, πAdP) .
(3) The principal bundle P can be realised as an associated bundle

(P ×ℓ G,B,G, πP×ℓG) ,
where ℓ ∶ G × G Ð→ G is the left regular action of G on itself. The relevant bundle
isomorphism is given by

ı̃ ∶ P ×ℓ GÐ→ P ∶ [(p, g)] z→ p ⊲ g ,
its smoothness following from the fact that it closes the commutative diagram

B

P ×G π∼
//

r

88

P ×ℓ G

πP×ℓG

OO

,

in which π∼ is a surjective submersion, and r is a smooth map. The inverse ı̃ is given,
in a manifestly smooth form, by

ı̃−1 ∶ PÐ→ P ×ℓ G ∶ pz→ [(p, e)] .
On the associated bundle P ×ℓ G, we find the following right action:

r̃ ∶ (P ×ℓ G) ×GÐ→ P ×ℓ G ∶ ([(p, g)], h) z→ [(p, g ⋅ h)] .
Relative to it, each fibre is a torsor. The isomorphism ı̃ is G-equivariant,

ı̃ ○ r̃([(p, g)], h) = ı̃([(p, g ⋅ h)]) = p ⊲ (g ⋅ h) = (p ⊲ g) ⊲ h = r ○ ı̃([(p, g)], h) ,
and so we do, indeed, have a principal-bundle isomorphism.

In a search for automorphisms of the associated bundle P ×ℓ G, we note that due to
mutual commutativity of the left ℓ⋅ and right ℘⋅ ∶ G ×GÐ→ G ∶ (g, h) z→ g ⋅ h regular
actions, the latter induces—in virtue of Prop. 3, and for any g ∈ G—an associated-bundle
invariant

Φ[rg] ∶ P ×ℓ G↺ ∶ [(p, h)] z→ Φ[rg]πP(p)([(p, h)]) ,
with

Φ[rg]πP(p)([(p, h)]) = [p]P×ℓG ○ rg ○ [p]−1P×ℓG([(p, h)]) = [p]P×ℓG ○ rg ○ ℓϕP(p,p)(h) = [p]P×ℓG ○ rg(h)
8
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= [p]P×ℓG(h ⋅ g) = [(p, h ⋅ g)] ≡ r̃g([(p, h)]) ,
whence

Φ[rg] ≡ r̃g ,
and since

[(p, h)] = [(p ⊲ h, e)] ≡ ι̃−1(p ⊲ h)
and

[(p, h ⋅ g)] = [(p ⊲ h ⋅ g, e)] = [((p ⊲ h) ⊲ g, e)] = [(rg(p ⊲ h), e)] ≡ ι̃−1 ○ rg(p ⊲ h) ,
we obtain

ι̃ ○Φ[rg] ○ ι̃−1 = rg .
It is in this sense that automorphisms Φ[rg] are induced by r⋅, and the latter can be
regarded as a model associated-bundle invariant.

As announced before, the practical (e.g., physical) purpose behind the construction of the
associated bundle is to obtain a smooth distribution of manifolds of a predetermined (iso)type M
over a give base B (e.g., a spacetime), endowed with a distinguished action of a fixed Lie group
G (e.g., of symmetries of a physical theory), the latter being local over the base. In other words,
it is to obtain a manifold locally modelled on O×M, O ⊂ B with an action of G locally modelled
on λ. That the goal thus defined has been attained is demonstrated convincingly in the following
two propositions.
Proposition 3. Fix a principal bundle ((P,B,G, πP), r). The category of bundles associated
with P , with associated-bundle invariants as morphisms, to be denoted as

AssBun(P) .
is canonically equivalent to the category ManG of manifolds with a left action of G, with G-
equivariant maps as morphisms.

Proof: The first part of the statement is merely an indication of the class of morphisms to be
considered, and as such it does not require a separate proof (associated-bundle invariants can be
composed, and the identity map is—of course—an associated-bundle invariant). Also the one-to-
one correspondence between objects of the category AssBun(P) and G-manifolds is obvious.
Thus, the only thing that needs to be checked is the relevant bijective correspondence between
associated-bundle invariants and G-equivariant maps.

Let (Φ, idB) ∶ P ×λ1 M1 Ð→ P ×λ2 M2 be an associated-bundle invariant. We may define, for
some (arbitrary) point p ∈ P, a map—manifestly smooth—

χ[Φ] ∶= [p]−1λ2
○Φ ○ [p]λ1 ∶ M1

≅ÐÐ→ (P ×λ1 M1)πP(p) Ð→ (P ×λ2 M2)πP(p)
≅ÐÐ→M2 ,

which, owing to the defining property of Φ,

Φ ○ [p2]λ1 ○ [p1]−1λ1
= [p2]λ2 ○ [p1]−1λ2

○Φ ,

does not depend on the choice of the point p used in its definition. The G-equivariance of the thus
determined map follows from a direct computation, invoking Eq. (3) and carried out for arbitrary
(p, g) ∈ P ×G,

χ[Φ] ○ λ1g ≡ [p]−1λ2
○Φ ○ ([p]λ1 ○ λ1g) = [p]−1λ2

○Φ ○ [p ⊲ g]λ1 ≡ ([p ⊲ g]λ2 ○ λ2g−1)
−1 ○Φ ○ [p ⊲ g]λ1

= λ2g ○ [p ⊲ g]−1λ2
○Φ ○ [p ⊲ g]λ1 = λ2g ○ [p]−1λ2

○Φ ○ [p]λ1 ≡ λ2g ○ χ[Φ] .
Thus,

χ[Φ] ∈ HomG(M1,M2) .
Conversely, to every map χ ∈ HomG(M1,M2), we may associate a (smooth) map

Φ[χ]πP(p) ∶= [p]λ2 ○ χ ○ [p]−1λ1
∶ (P ×λ1 M1)πP(p) Ð→ (P ×λ1 M2)πP(p) ∶ [(p,m)] z→ [(p,χ(m))] ,

9



Associations in action, & The Trident (DDD ’24/25 VII, VIII & IX [rrS])

depending on p ∈ P exclusively through its projection to B,

Φ[χ]πP(p⊲g) = [p ⊲ g]λ2 ○ χ ○ [p ⊲ g]−1λ1
= [p]λ2 ○ (λ2g ○ χ ○ λ1g−1) ○ [p]−1λ1

= [p]λ2 ○ χ ○ (λ1g ○ λ1g−1) ○ [p]−1λ1
= [p]λ2 ○ χ ○ [p]−1λ1

≡ Φ[χ]πP(p) ,

and hence defining an associated-bundle invariant by the formula

Φ[χ] ∶ P ×λ1 M1 Ð→ P ×λ2 M2 ∶ [(p,m)] z→ Φ[χ]πP(p)([(p,m)]) .
Indeed, we calculate

Φ[χ] ○ [p2, p1]λ1 ≡ ([p2]λ2 ○ χ ○ [p2]−1λ1
) ○ ([p2]λ1 ○ [p1]−1λ1

) = [p2]λ2 ○ χ ○ [p1]−1λ1

= ([p2]λ2 ○ [p1]−1λ2
) ○ ([p1]λ2 ○ χ ○ [p1]−1λ1

) ≡ [p2, p1]λ2 ○Φ[χ] .
The two assignments given above:

HomAssBun(P)(P ×λ1
M1,P ×λ2 M2) Ð→ HomG(M1,M2) ∶ (Φ, idB) z→ χ[Φ]

and

HomG(M1,M2) Ð→ HomAssBun(P)(P ×λ1 M1,P ×λ2 M2) ∶ χz→ (Φ[χ], idB)
are mutually inverse, and each of them is functorial. Indeed, given a manifold M with an action
λ ∶ G ×M Ð→M , we obtain, over an arbitrary point p ∈ P, the equality

Φ[idM ]πP(p) = [p]λ2 ○ idB ○ [p]−1λ1
= [p]λ2 ○ [p]−1λ1

= id(P×λM)πP(p)
,

and so also

Φ[idM ] = idP×λM .

Furthermore, for any pair of G-equivariant maps χα ∶ Mα Ð→ Mα+1, α ∈ {1,2} between G-
manifolds Mβ , β ∈ {1,2,3} with the respective actions λβ ∶ G ×Mβ Ð→ Mβ , we obtain the
expected identity (written out for an arbitrary point p ∈ P) we arrive at the commutative diagram
(for an arbitrary point p ∈ P)

Φ[χ2 ○ χ1] ≡ [p]λ3 ○ (χ2 ○ χ1) ○ [p]−1λ1
= [p]λ3 ○ χ2 ○ [p]−1λ2

○ [p]λ2 ○ χ1 ○ [p]−1λ1
≡ Φ[χ2] ○Φ[χ1] .

An analogous argument convinces us of the functoriality of the inverse map. □

Remark 2. The term "adjoint bundle" is sometimes used in the literature with regard to another
associated bundle, to wit,

(adP ≡ P ×TeAd g,B,g, πP×TeAdg) ,
with the typical fibre given by the Lie algebra g of the structure Lie group G.
Remark 3. Prior to advancing in our discussion of the procedure of association, we pause to
investigate the important question about the anatomy of (global) sections of an associated bundle.
Let ϕ ∈ Γ(P ×λ M) be such a section. Upon restriction to the domain Oi (i ∈ I) of a local
section σi ∶ Oi Ð→ P of the mother principal bundle, i.e., to the latter’s trivialisation chart
τ̃i ≡ τ̃σi ∶ π−1P×λM(Oi)

≅ÐÐ→ Oi ×M , the section ϕ becomes a section of the bundle P×λM↾Oi
, and

so under τ̃i takes the form

τ̃i ○ ϕ↾Oi
= (idOi , µi)

for some (locally) smooth map µi ∶ Oi Ð→ M . Invoking the explicit form of the iverse of the
induced trivialisation [τi], we recover the local presentation of the global section:

ϕ↾Oi
= τ̃−1i ○ (idOi , µi) = [(τ−1i (⋅, e), µi(⋅))] ,

czyli

ϕ↾Oi
= [(σi(⋅), µi(⋅))] ,

10
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where σi ≡ στi is the flat unital section of P (associated with τi). Accordingly, we may (and shall,
henceforth) locally represent an arbitrary global section as

ϕ =loc. [(σ,µ)] ,
i.e., as a G-orbit of a pair composed of a local section σ ∶ O Ð→ P of the principal bundle P
(over some open set O ∈ T (B)) and a locally smooth map µ ∶ O Ð→ M . Thus equipped, we
return to the study of the structure of associated bundles.

We have the fundamental
Theorem 1. There exists on AdP a canonical structure of a group object in the (slice) category
Bun(B)/B, locally modelled on G. This structure canonically induces that of a (Fréchet–Lie)
group on the space Γ(AdP) of sections of the bundle. The latter admits a realisation on the space
Γ(P×λM) of sections of the associated bundle P×λM , which, in turn, is induced from a canonical
structure of a left ÂdP-module-object in Bun(Σ)/Σ that exists on P ×λ M , itself being locally
modelled on λ.

Proof: Before we proceed, let us remark that a variant of the cartesian product adapted to the
structure of the slice categoryBun(B)/B is the B-fibred cartesian product (which exists owing to
submersivity of base projections of fibre bundles). Moreover, the terminal object in that category
has a natural model

● �
� // B × ● ≡ B

idB

��
B

.

With these preparatory observations in mind, we may now dive headlong into details of the con-
structive proof below.

Consider, first, a binary operation

[M] ∶

AdP ×B AdP //

""

AdP

��
B

∶ ([(p1, g1)], [(p2, g2)]) z→ [(p1, g1 ⋅AdϕP(p1,p2)(g2))] ,

alongside the slice-category constant

[ε] ∶

B × ● ≡ B //

  

AdP

��
B

∶ xz→ [(p, e)] , p ∈ Px ,

and the unary operation

[Inv] ∶

AdP //

��

AdP

��
B

∶ [(p, g)] z→ [(p, g−1)] .

We begin by verifying that all three maps are well-defined. Thus, let (p3, g3) ∈ [(p1, g1)], so that
(p3, g3) = (p1 ⊲ g13,Adg−113

(g1)) and (p4, g4) ∈ [(p2, g2)], i.e., (p4, g4) = (p2 ⊲ g24,Adg−124
(g2)),

where we are using the notation gij ≡ ϕP(pi, pj), (i, j) ∈ {(1,3), (2,4)} for the sake of brevity. In
virtue of Prop. VI.1., we obtain

[(p3, g3 ⋅Adg34(g4))] = [(p1,Adg13(g3 ⋅Adg34(g4)))] = [(p1,Adg13(Adg−113
(g1) ⋅Adg34⋅g−124

(g2)))]

= [(p1, g1 ⋅Adg13⋅g34⋅g42(g2))] = [(p1, g1 ⋅Adg12(g2))]
11
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and

[(p3, g−13 )] = [(p1,Adg13(g−13 ))] = [(p1,Adg13(g3)−1)] = [(p1, g−11 )] .
Besides, we readily establish that the value taken by the constant [ε] does not depend on the
choice of the point in the fibre over x as for any p̃ = p ⊲ ϕP(p, p̃), we get

[(p̃, e)] = [(p ⊲ ϕP(p, p̃), e)] = [(p,AdϕP(p,p̃)(e))] = [(p, e)] .
Our proof of the claim that the above structure is locally modelled on G boils down to demon-
strating that the fibre-modelling isomorphisms

[p∗]Ad ∶ (AdP)
x
Ð→ G ∶ [(p, g)] z→ AdϕP(p∗,p)(g) , x ∈ B ,

are group homomorphisms, which we show below (for an arbitrary pair of points (p1, g1), (p2, g2) ∈
P ×G such that p1, p2 ∈ (P)x), invoking Prop. VI.1. again along the way,

[p∗]Ad ○ [M]([(p1, g1)], [(p2, g2)]) = [p∗]Ad([(p1, g1 ⋅AdϕP(p1,p2)(g2))])

= AdϕP(p∗,p1)(g1 ⋅AdϕP(p1,p2)(g2)) = AdϕP(p∗,p1)(g1) ⋅AdϕP(p∗,p1)⋅ϕP(p1,p2)(g2)

= AdϕP(p∗,p1)(g1) ⋅AdϕP(p∗,p2)(g2) ≡M([p∗]Ad([p1, g1]), [p∗]Ad([p2, g2])) .
The first step towards a reconstruction of the fibrewise action of the group Γ(AdP) on the

space Γ(P ×λ M) consists in identifying the following left action of the adjoint bundle on P:

[r]⋅ ∶

AdP ×B P //

  

P

��
B

∶ ([(p, g)], p̃) z→ rAdϕP(p̃,p)(g)
(p̃) .(4)

The latter is defined unequivocally since for any representative (p2, g2) ∈ [(p1, g1)], we obtain

rAdϕP(p̃,p2)(g2)
(p̃) = rAdϕP(p̃,p1)⋅ϕP(p1,p2)(g2)(p̃) = rAdϕP(p̃,p1)(AdϕP(p1,p2)(g2))(p̃) = rAdϕP(p̃,p1)(g1)

(p̃) .

Its smoothness is ensured by Thm.V.2.—indeed, [r]⋅ is the (only) smooth map induced by the
(manifestly smooth) map

r̃⋅ ∶

(P ×G) ×B P //

""

P

��
B

∶ ((p, g), p̃) z→ rAdϕP(p̃,p)(g)
(p̃) ,

constant on level sets of the canonical projection π∼ ∶ P ×GÐ→ (P ×G)/G. We readily convince
ourselves that [r]⋅ has properties analogous to the defining ones of a (left) group action: The
neutral element acts trivially,

[r][(p,e)](p̃) = rAdϕP(p̃,p)(e)
(p̃) = re(p̃) = p̃ ,

and [r]⋅ is multiplicative in the first argument, i.e., for any pair [(p1, g1)] ≡ [(p̃, g̃1)], [(p2, g2)] ≡
[(p̃, g̃2)] ∈ (PG)πPG

(p̃), we find the identity

[r][M]([(p1,g1)],[(p2,g2)])(p̃) ≡ [r][M]([(p̃,g̃1)],[(p̃,g̃2)])(p̃) = [r][(p̃,g̃1⋅g̃2)](p̃) = rg̃1⋅g̃2(p̃)

= rg̃2⋅Ad
g̃−1
2
(g̃1)(p̃) = rAd

g̃−1
2
(g̃1) ○ rg̃2(p̃) ≡ [r][(rg̃2(p̃),Ad

g̃−1
2
(g̃1))](rg̃2(p̃)) = [r][(p̃,g̃1)](rg̃2(p̃))

≡ [r][(p1,g1)]([r][(p2,g2)](p̃)) .
It ought to be underlined that the action of the adjoint bundle defined above com-
mutes with the defining (right) action r⋅—indeed, for any p̃ ∈ (PG)πPG

(p), [(p, g)] ≡ [(p̃, g̃)] ∈
AdPG and h ∈ G , we conclude that

[r][(p,g)] ○ rh(p̃) = rAdϕPG
(rh(p̃),p̃)(g̃)

(rh(p̃)) = rAdh−1(g̃)(rh(p̃)) = rg̃⋅h(p̃) = rh ○ rg̃(p̃) ≡ rh ○ [r][(p,g)](p̃) .
12
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The significance of the above fact follows from the fact that it implies commutativity of the action
induced by [r]⋅ on P ×M as

[̃r]⋅ ∶

AdP ×B (P ×M) //

$$

P ×M

��
B

∶ ([(p1, g1)], (p2,m2)) z→ (rAdϕP(p2,p1)(g1)(p2),m2)

(5)

with the action λ̃⋅ defined in Eq. (VI.5) that serves as the basis of the construction of the associated
bundle P ×λ M . Consequently, the induced action descends to the smooth quotient P ×λ M ≡
(P ×M)/G in the form

[λ]⋅ ∶

AdP ×B (P ×λ M) //

$$

P ×λ M

��
B

∶ ([(p1, g1)], [(p2,m2)]) z→ [(p2, λAdϕP(p2,p1)(g1)(m2))] ,

(6)

where [(p2, λAdϕP(p2,p1)(g1)(m2))] ≡ [[̃r][](p1,g1)](p2,m2)].
We may, next, transpose the above actions, without losing any of their desired properties verified

above, from the total space of the adjoint bundle to the space of its (global) sections, according
to the prescription

Γ[r]⋅ ∶ Γ(AdP) × PÐ→ P ∶ (σ, p) z→ [r]σ○πP(p)(p) .
The space Γ(AdP) (equipped with the natural structure of a Fréchet manifold) thus assumes the
rôle of the support of the structure of a (Fréchet–Lie) group with group operations

Γ[M] ∶ Γ(AdP) × Γ(AdP) Ð→ Γ(AdP) ∶ (σ1σ2) z→ [M] ○ (σ1, σ2) ,

Γ[Inv] ∶ Γ(AdP) ↺ ∶ σ z→ [Inv] ○ σ ,

Γ[ε] ∶ ● Ð→ Γ(AdP) ∶ ● z→ [(σ(⋅), e)] ,
induced, in an obvious (pointwise) manner, from the respective operations on AdP, and, at the
same time, that of a subgroup of the group of automorphisms of the principal bundle P (covering
the identity on the base, i.e., as expected in the slice category). Here, the map Γ[r]σ is identified
with the automorphism (Γ[r]σ, idG, idB) in the notation of Def. VI.1. We may subsequently ex-
tend, again in an obvious way, the thus understood action of the group of sections of the adjoint
bundle on P to the bundle P ×M over the same base B by setting

Γ[r̃]⋅ ∶= Γ[r]⋅ × idM ∶ Γ(AdP) × (P ×M) Ð→ P ×M ∶ (σ, (p,m)) z→ ([r]σ○πP(p)(p),m) .

As before, we find the key property of the latter action: its commutativity with the action λ̃⋅.
Indeed, for any σ ≡ [(π, γ)] ∈ Γ(AdP), g ∈ G and (p,m) ∈ P×M , we find—upon invoking relative
commutativity of the actions: [r]⋅ i r⋅, checked formerly—the identity

Γ[r̃]σ ○ λ̃g(p,m) = ([r]σ○πP(rg(p))(rg(p)), λg−1(m)) ≡ ([r]σ○πP(p) ○ rg(p), λg−1(m))

= (rg ○ [r]σ○πP(p)(p), ℓg−1(m)) = λ̃g ○ Γ[r̃]σ(p,m) .
As a result of the above, the induced action Γ[r̃]⋅ descends to the quotient manifold (P×M)/G ≡
P ×λ M just like its bundle precursor did, i.e., it canonically induces a left action of the group
Γ(PAd⋅G) on the manifold P ×λ M , given by

[Γ[r̃]]λ⋅ ∶ Γ(AdP) × P ×λ M Ð→ P ×λ M ∶ (σ, [(p,m)]) z→ [([r]σ○πP(p)(p),m)] .
Our hitherto analysis shows that the latter map is well-defined and has all the requisite properties
of a (left) group action. In the last step, we induce with its help the action, postulated in the

13
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statement of the proposition, of the group Γ(AdP) on the space of (global) sections of the assciated
bundle,

Γ[Γ[r̃]]λ⋅ ∶ Γ(AdP) × Γ(P ×λ M) Ð→ Γ(P ×λ M)

∶ (σ, [(π,µ)]) z→ [([r]σ○πP○π(⋅) ○ π(⋅), µ(⋅))] ≡ [([r]σ(⋅) ○ π(⋅), µ(⋅))] .(7)

This is, self-evidently, a lift, to the space of sections, of the previously considered map [λ]⋅, whose
well-definedness and multiplicativity in the first argument is a direct consequence of the respective
properties of the action Γ[Γ[r̃]]⋅, checked previously. That the action [λ]⋅ is locally modelled on
λ⋅, as claimed, is most straightforwardly proven with the help of the isomorphisms [p∗]Ad oraz
[p∗]λ, indicated before. Thus, we carry out the following calculation:

λ[p∗]Ad([(p1,g1)])([p∗]λ([(p2,m2)])) = λAdϕP(p∗,p1)(g1)
○ λϕP(p∗,p2)(m2)

= λϕP(p∗,p2)⋅AdϕP(p2,p1)(g1)(m2) = λϕP(p∗,p2)(λAdϕP(p2,p1)(g1)(m2))

≡ [p∗]λ([(p2, λAdϕP(p2,p1)(g1)(m2))]) ≡ [p∗]λ ○ [λ][(p1,g1)]([(p2,m2)]) .
□

The above proposition together with its constructive proof demonstrate convincingly that the
goal set before has been attained: We have constructed a ‘space of fields amenable to observa-
tion/description in the local frames’ P ×λ M and ‘space of symmetry transformations between
the local frames’ AdP (with the frames in question provided by P). In so doing, the proposition
and the proof emphasise the rôle played by the space of smooth sections of the associated bundle,
which prompts us to take a closer look at the latter. We do that in
Proposition 4. There exists a bijection

Γ(P ×λ M) ≅ HomG(P,M) ,
where HomG(P,M) is the set of G-equivariant maps PÐ→M of Def. I.14.

Proof: Invoke Rem. 3 to express a global section ϕ ∈ Γ(P×λ M) locally as ϕ = [(σ,µ)] in terms of
(local) sections σ ∈ Γloc(P) and µ ∈ Γloc(B ×M). Using the quotient map and the canonical base
projection of P, we define a map

Φλ[ϕ] ∶ PÐ→M ∶ pz→ λϕP(p,σ○πP(p))(µ ○ πP(p)) .
We readily convince ourselves that the above definition makes sense as for any pair (σ′, µ′) = (σ ⊲
Inv ○ γ, γ ⊳ µ) associated, in an obvious manner, with γ ∈ Γloc(B ×G), we find—upon invoking
the axioms of an action of a group on a set—the desired equality

λϕP(p,σ′○πP(p))(µ
′ ○ πP(p)) = λϕP(p,σ○πP(p)⊲γ○πP(p)−1)(λγ○πP(p)(µ ○ πP(p)))

= λϕP(p,σ○πP(p))⋅γ○πP(p)−1⋅γ○πP(p)(µ ○ πP(p)) = λϕP(p,σ○πP(p))(µ ○ πP(p)) .
Its G-equivariance follows from the direct calculation:

Φλ[ϕ] ○ rg(p) = λϕP(p⊲g,σ○πP(p⊲g))(µ ○ πP(p ⊲ g)) = λg−1⋅ϕP(p,σ○πP(p))(µ ○ πP(p)) = λg−1 ○Φλ⋅[ϕ](p) ,
carried out for arbitrary (p, g) ∈ P ×G, and using Prop.VI.1. in conjunction with the aforemen-
tioned axioms.

In order to construct the inverse of the above assignment, we fix an (arbitrary) open trivialising
cover {Oi}i∈I for the bundle P, and subsequently assign, to an arbitrary G-equivariant map
f ∶ PÐ→M , the family

Sλ[f]i ∶ Oi Ð→ P ×λ M ∶ xz→ [(τ−1i (x, e), f ○ τ−1i (x, e))] , i ∈ I
of local sections. Each of them is (locally) smooth as a superposition of the respective smooth maps
(τ−1i (⋅, e), f ○ τ−1i (⋅, e)) ∶ Oi Ð→ P×M and the surjective submersion π∼ ∶ P×M Ð→ P×λM . We
readily establish that these local sections are, in fact, restrictions (to the respective sets Oi) of a
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global one upon noting that due to G-equivariance of the maps τi and f the following equality
holds, at an arbitrary point x ∈ Oij ,

Sλ[f]j(x) = [(τ−1j (x, e), f ○ τ−1j (x, e))] = [(τ−1i (x, gij(x)), f ○ τ−1i (x, gij(x)))]

= [(τ−1i (x, e) ⊲ gij(x), f(τ−1i (x, e) ⊲ gij(x))] = [(τ−1i (x, e) ⊲ gij(x), gij(x)−1 ⊳ f ○ τ−1i (x, e)]

= [(τ−1i (x, e), f ○ τ−1i (x, e))] ≡ Sλ[f]i(x) .

A direct calculation of both superpositions:

Φλ[Sλ[f]] ∶ PÐ→M ∶ pz→ λϕP(p,p)(f(p)) = λe(f(p)) = f(p)

and

Sλ[Φλ[[(σ,µ)]]] ∶ B Ð→ P ×λ M

∶ xz→ [(τ−1i (x, e), λϕP(τ−1i (x,e),σ○πP○τ−1i (x,e))
(µ ○ πP ○ τ−1i (x, e)))]

≡ [(τ−1i (x, e), λϕP(τ−1i (x,e),σ(x))
(µ(x)))] = [(σ,µ)](x)

reveals the veracity of the desired identities

Φλ ○ Sλ = idHomG(P,M) , Sλ ○Φλ = idΓ(P×λM) .

□

A specialisation of the last result to the adjoint bundle turns out to carry further structural
information, displayed in

Proposition 5. The bijection

Γ(AdP) ≅ HomG(P,G)

of Prop. 4 is an isomorphism between the group of sections of the adjoint bundle, with the structure
detailed in the proof of Thm. 1, and the group of maps from P to G equivariant relative to the
respective (left) actions rInv(⋅) and Ad⋅, with the natural pointwise group structure.

Proof: Borrowing the notation from the proofs of both statements mentioned above, we check, for
any pair of sections ϕα = [(σα, γα)] ∈ Γ(AdP), α ∈ {1,2} and a point p ∈ P,

ΦAd[Γ[M](ϕ1, ϕ2)](p) = AdϕP(p,σ1○πP(p))(γ1 ○ πP(p) ⋅AdϕP(σ1○πP(p),σ2○πP(p))(γ2 ○ πP(p)))

= AdϕP(p,σ1○πP(p))(γ1 ○ πP(p)) ⋅AdϕP(p,σ1○πP(p))⋅ϕP(σ1○πP(p),σ2○πP(p))(γ2 ○ πP(p))

= AdϕP(p,σ1○πP(p))(γ1 ○ πP(p)) ⋅AdϕP(p,σ2○πP(p))(γ2 ○ πP(p)) =M ○ (ΦAd(ϕ1),ΦAd(ϕ2))(p) .

□

The relative-structural character of the bijection of Props. 4 and 5 (i.e., one which, on top of
the structure carried by the sets mapped by it, preserves also the structural relation between the
sets (a realisation of one in terms of permutations of the other)), is best illustrated by

Proposition 6. The pair (ΦAd,Φλ) defines a (generalised) equivariant bijection between the sets:
Γ(AdP) ↻ Γ(P×λM) and HomG(P,G) ↻ HomG(P,M) endowed with actions of the respective
groups, the second of which is induced pointwise from λ, i.e., given by

ΦAdλ⋅ ∶ HomG(P,G) ×HomG(P,M) Ð→ HomG(P,M) ∶ (γ(⋅), µ(⋅)) z→ λγ(⋅)(µ(⋅)) ,
15
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and so we have a commutative diagram

Γ(AdP) × Γ(P ×λ M)
Γ[Γ[r̃]]λ⋅ //

ΦAd×Φλ

��

Γ(P ×λ M)

Φλ

��
HomG(P,G) ×HomG(P,M)

ΦAdλ⋅
// HomG(P,M)

.

In other words, bijection Φλ is (left) equivariant with respect to the following actions of Γ(AdP):
the action Γ[Γ[r̃]]λ⋅ on the space Γ(P ×λ M), defined in Eq. (7), and the natural action

[ΦAdλ]⋅ = ΦAdλ⋅ ○ (ΦAd × idHomG(P,M))
on the space of G-equivariant maps HomG(P,M).

Proof: Before all else, we convince ourselves that the map ΦAdλ⋅ is well-defined. To this end,
we pick up an arbitrary pair (γ,µ) ∈ HomG(P,G) ×HomG(P,M) and consider the result of the
evaluation ΦAdλγ(µ)—we must prove that the latter is G-equivariant, which we do in a direct
computation, carried out for arbitrary (p, g) ∈ P ×G,

ΦAdλγ ○ r∗g(µ)(p) = λγ○rg(p)(µ ○ rg(p)) = λAdg−1(γ(p)) ○ λg−1(µ(p)) = λg−1(λγ(p)(µ(p)))

≡ λg−1 ○ΦAdλγ(µ)(p) .
It is obvious that the map ΦAdλ⋅ satisfies the axioms of a group action. Therefore, it remains to
verify its equivariance. For arbitrary γ = [(σ̃, g̃)] ≡ [(σ, g)] ∈ Γ(AdP) and ϕ = [(σ,µ)] ∈ Γ(P×λM)
as well as p ∈ (P)x, we calculate

Φλ[Γ[Γ[r̃]]λγ(ϕ)](p) = λϕP(p,λγ(x)(σ(x)))(µ(x)) = λϕP(p,rAdϕP(σ(x),σ(x))(g(x))
(σ(x)))(µ(x))

= λϕP(p,rg(x)(σ(x)))(µ(x)) = λϕP(p,σ(x))⋅g(x)(µ(x)) ≡ λAdϕP(p,σ(x))(g(x))⋅ϕP(p,σ(x))(µ(x))

= λAdϕP(p,σ(x))(g(x))
(λϕP(p,σ(x))(µ(x))) ≡ λAdϕP(p,σ(x))(g(x))

(Φλ[ϕ](p))

= ΦAdλAdϕP(⋅,σ○πP(⋅))(g○πP(⋅))(Φλ[ϕ])(p) ≡ ΦAdλΦAd[γ](Φλ[ϕ])(p) ,

which is the anticipated result. □

Our hitherto considerations present AdP as a bundle of groups acting on a bundle of manifolds
M in a natural manner modelled on λ. The statement that we give below deepens our observations
substantially and, simultaneously, paves a way towards a natural physical interpretation of the
group Γ(AdP) as the gauge group of the field theory.
Proposition 7. There exists a canonical group isomorphism

Γ(AdP) ≅ { (Φ, idG, f) ∈ AutBunG(B)(P) ∣ f = idB } =∶ AutBunG(B)/B(P) .

Proof: We begin by establishing a bijection between the sets HomG(P,G) and AutBunG(B)/B(P).
For that, we pick up (arbitrarily) γ ∈ HomG(P,G) and define a map

Ψ[γ] ∶ P↺ ∶ pz→ rγ(p)(p) .
The latter is manifestly G-equivariant,

∀(p,g)∈P×G ∶ Ψ[γ] ○ rg(p) ≡ rγ○rg(p)(rg(p)) = rAdg−1(γ(p))(rg(p)) = rγ(p)⋅g(p) = rg ○Ψ[γ](p) ,

and preserves fibres, and so it defines an automorphism

(Ψ[γ], idG, idB) ∈ AutBunG(B)/B(P) .
16
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Furthermore, it is a group homomorphism—a fact readily inferred from the following direct com-
putation:

Ψ[M̃(γ1, γ2)](p) = rγ1(p)⋅γ2(p)(p) ≡ rγ2(p)⋅Adγ2(p)−1(γ1(p))(p) = rAdγ2(p)−1(γ1(p)) ○ rγ2(p)(p)

= rγ1(p⊲γ2(p)) ○ rγ2(p)(p) ≡ Ψ[γ1] ○Ψ[γ2](p) ,

carried out for arbitrary γ1, γ2 ∈ HomG(P,G). At this stage, it suffices to invoke Prop. 4, to obtain
the sought-after group homomorphism

α⋅ ≡ (Ψ[⋅], idG, idB) ○ΦAd⋅ ∶ Γ(AdP) Ð→ AutBunG(B)/B(P) .

Going in the opposite direction, we associate to an arbitrary automorphism (Φ, idG, idB) ∈
AutBunG(B)/B(P) a map

χ[(Φ, idG, idB)] ∶ PÐ→ G ∶ pz→ ϕP(p,Φ(p))

whose G-equivariance is proven on the basis of Prop.VI.1., and for arbitrary (p, g) ∈ P ×G, as

χ[(Φ, idG, idB)] ○ rg(p) ≡ ϕP(rg(p),Φ ○ rg(p)) = ϕP(rg(p), rg ○Φ(p)) = Adg−1(ϕP(p,Φ(p)))

≡ Adg−1 ○ χ[(Φ, idG, idB)](p) .

It is easy to see that the map

χ ∶ AutBunG(B)/B(P) Ð→ HomG(P,G)

thus obtained is a group homomorphism—indeed, for any pair of automorphisms (Φα, idG, idB) ∈
AutBunG(B)/B(P), α ∈ {1,2}, we calculate

χ[(Φ1, idG, idB) ○ (Φ2, idG, idB)](p) = ϕP(p,Φ1 ○Φ2(p)) = ϕP(p,Φ1(p)) ⋅ ϕP(Φ1(p),Φ1 ○Φ2(p)) ,

but also

ϕP(Φ1(p),Φ1 ○Φ2(p)) = ϕP(Φ1(p),Φ1(p ⊲ ϕP (p,Φ2(p)))) = ϕP(Φ1(p),Φ1(p) ⊲ ϕP (p,Φ2(p)))

= ϕP (p,Φ2(p)) ,

and hence

χ[(Φ1, idG, idB) ○ (Φ2, idG, idB)](p) = ϕP(p,Φ1(p)) ⋅ ϕP(p,Φ2(p))

≡ M̃(χ[(Φ1, idG, idB)], χ[(Φ2, idG, idB)])(p) ,

in conformity with our expectations. In the end, we arrive at the group homomorphism

SAd⋅ ○ χ ∶ AutBunG(B)/B(P) Ð→ Γ(AdP) .

In order to verify that the latter is the inverse of the previously considered homomorphism Ψ○ΦAd,
it is enough to check that χ is the inverse of the automorphism (Ψ[⋅], idG, idB), which we do
directly by computing, for arbitrary (p, g, x) ∈ P ×G ×B,

(Ψ[⋅], idG, idB) ○ χ[(Φ, idG, idB)](p, g, x) = (rϕP(p,Φ(p))(p), g, x) = (Φ(p), g, x) ≡ (Φ, idG, idB)(p, g, x)

and

χ ○ (Ψ[⋅], idG, idB)[γ](p) = ϕP(p, rγ(p)(p)) = γ(p) .

□

17
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3. Groupoidification & the Atiyah sequence

Following the general logic of the course, we shall, next, reformulate and elaborate the findings of
the present lecture in the language of Lie groupoids. We base our considerations thus oriented upon,
on one hand, the very detailed groupoid-theoretic examination of the principal bundle P carried
out in Sec.VI.3., and, on the other hand, the idea of inheritance of the AdP-module structure by
P ×M from P and of descent of that structure along the symmetry quotient P ×M Ð→ P ×λ M ,
embodied by the induction of the action [λ] from the G-equivariant action [̃r]. We shall also be
concerned with the Lie-groupoidal aspect of the conceptually clear relation between the ‘space
of symmetry transformations between the local frames’ AdP, introduced in this lecture, and the
‘space of (inter-observer) objectivisations’ At(P), encountered in the previous lecture.

By way of a warm-up, note that the action of the adjoint bundle AdP on the principal bundle
P given in Eq. (4) can be viewed as a groupoid action. For that, we need the fairly obvious

Proposition/Definition 1. The structure of a group object in the slice category Bun(B)/B
carried by the adjoint bundle AdP (in virtue of Thm. 1) canonically induces on it the structure of
(the arrow manifold of) a Lie-groupoid object in Bun(B)/B with object manifold given by the
terminal object B × ● ≡ B in that category, source and target both equal to πAdP, identity given
by [ε], and inverse equal to [Inv]. The structure is summarised by the following diagram

AdP ×B AdP
[M] //

πAdP○pr1

��

AdP
[Inv] //

πAdP

��

AdP
πAdP //
πAdP

//

πAdP

��

B

[ε]

��

B B B B

,

The above Lie groupoid is called the adjoint groupoid of P.

Proof: Trivial. □

We may now state

Proposition 8. Every principal bundle P carries a canonical structure of a left module of the
corresponding adjoint groupoid AdP // // B, with momentum idB and action [r] of Eq. (4). The
action preserves fibres of the base projection πP ∶ P Ð→ B, turning P into a (non-principal)
AdP-bundle.

Proof: No less trivial. □

A moment’s thought reveals that the adjoint groupoid AdP //// B can be understood as a

restriction of the Atiyah–Ehresmann groupoid At(P) // // B of Def. VI.5. to the diagonal in the
cartesian square B×B into which At(P) is mapped by (S,T). The shortest way to this conclusion
leads via the diffeomorphism

(pr1, ϕP) ∶ P ×B P
≅ÐÐ→ P ×G

of Prop. VI.1., which we readily verify to intertwine the diagonal action

G × (P ×B P) Ð→ P ×B P ∶ (g, (p2, p1)) z→ (rg−1(p2), rg−1(p1))

with the familiar one

Ãd ∶ G × (P ×G) Ð→ P ×G ∶ (g, (p, h)) z→ (rg−1(p),Adg(h))
18
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on the codomain, which defines the quotient

(P ×G)//Ãd(G) ≡ (P ×G)//G ≡ AdP .

Indeed, we obtain, for any (p2, p1) ∈ P ×B P and g ∈ G,

(pr1, ϕP)(rg−1(p2), rg−1(p1)) ≡ (rg−1(p2), ϕP(rg−1(p2), rg−1(p1))) = (rg−1(p2),Adg(ϕP(p2, p1)))

≡ Ãdg ○ (pr1, ϕP)(p2, p1) .
The upshot of this chain of thought is the existence of a diffeomorphism

AdP ≡ (P ×G)//G ≅ (P ×B P)//G ⊂ (P × P)//G ≡ At(P) .
Rather than sticking to the above, though, we shall now follow a more demanding route, which,

however, leads through more general results, and as such is of relevance to our later considerations.
Its starting point is marked by
Proposition 9. Let G1

// // M1 and G2
//// M2 be Lie groupoids, and let

G1
χ //

t1

��

s1

��

G2

t2

��

s2

��
M1 χ0

// M2

be a morphism of Lie groupoids, whose component χ is transverse1 to the identity bisection
Id(M2) ⊂ G2. The preimage χ−1(Id(M2)) of Id(M2) is a Lie subgroupoid of G1

//// M1.

Proof: For χ−1(Id(M2)) to be a Lie subgroupoid in G1, the former has to be a submanifold in
G1. In virtue of a classic variant of the Level-Set Theorem for submanifolds, this is ensured by
transversality of χ.

At this stage, it remains to check that the subset χ−1(Id(M2)) ⊂ G1 is a subgroupoid. To this
end, consider an arbitrary pair (g1, g′1) ∈ χ−1(Id(M2)) s1×t1 χ−1(Id(M2)). There then exist points
m2,m

′
2 ∈M2 such that χ(g1) = Idm2 and χ(g′1) = Idm′2 . As χ0 ○ s1 = s2 ○ χ and χ0 ○ t1 = t2 ○ χ, we

establish the identity

m′2 = t2(Idm′2) = t2(χ(g
′
1)) = χ0(t1(g′1)) = χ0(s1(g1)) = s2(χ(g1)) = s2(Idm2) =m2 .

Since χ is a morphism, this implies

χ(g1.g′1) = χ(g1).χ(g′1) = Idm2 .Idm′2 = Idm2 ,

which leads to the desired conclusion g1.g
′
1 ∈ χ−1(Id(M2)). Similarly, for every g1 ∈ χ−1(Id(M2)),

with χ(g1) = Idm2 , we have χ(g−11 ) = χ(g1)−1 = Id−1m2
= Idm2 , and so also g−11 ∈ χ−1(Id(M2)). □

In order to jump directly to its end point, we need one more
Definition 2. Let Gra, a ∈ {1,2,3} be Lie groupoids and let ȷ ∶ Gr1 Ð→Gr2 and π ∶ Gr2 Ð→
Gr3 be Lie-groupoid morphisms. We say that the quintuple (Gr1,Gr2,Gr3, ȷ, π) composes a
short exact sequence of Lie groupoids

Gr1
� � ȷ // Gr2

π // // Gr3

if the π-preimage of the identity bisection Id(ObGr3) ⊂MorGr3 is canonically isomorphic to the
(faithful) ȷ-image of Gr1 in Gr2. If, moreover, there exists a Lie-groupoid morphism σ ∶ Gr3 Ð→
Gr2 such that the identity π ○σ = idGr3 obtains, then we say that the short exact sequence splits,
and call it a split short exact sequence (of Lie groupoids).

Upon noting that B ×B is the arrow manifold of Pair(B), we are thus led to the following

1Recall that a smooth manifold map f ∶ M → N is said to be transverse to a submanifold S ⊂ N if at an
arbitrary point m ∈ f−1(S), the following condition is satisfied: Tmf(TmM) +Tf(m)S = Tf(m)N .
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Theorem 2. For every principal bundle ((P,B,G, πP), r), the three Lie groupoids: the Atiyah–
Ehresmann groupoid At(P) //// B, the adjoint groupoid AdP //// B, and the pair groupoid Pair(B)
compose a short exact sequence

AdP
� � ȷAdP //

πAdP

��

πAdP

��

At(P)
(T,S) // //

T

��

S

��

B ×B

pr1

��

pr2

��
B B B

,(8)

in which ȷAdP is an embedding, explicitly given by

ȷAdP ∶ AdPÐ→ At(P) ∶ [(p, g)] z→ [(p, rg(p))] .

Proof: Exactness of sequence (8) at its node Pair(B) follows from Prop. VI.10. As a set, AdP fits
into the short exact sequence by definition, in virtue of the argument preceding Prop. 9, and the
only thing that remains to be proven is the embedding of AdP //// B in At(P) // // B as a Lie
subgroupoid. Since ((T,S), idB) is an epimorphism of Lie groupoids, its arrow component (T,S)
is automatically transverse to Id(B) ⊂ B ×B (as a submersion), and so we conclude the present
proof by invoking Prop. 9. □

Remark 4. While the statement of the above theorem is, by now, clear, we pause to elaborate
on the embedding ȷAdP. The rationale behind the elaboration is that it leaves us with a handy
logical tool, which can be used to further investigate the Atiyah–Ehresmann groupoid. Thus, let us
examine the geometric content of the preimage along (T,S) of an arrow (x,x) from the identity
submanifold Id(B) ⊂ B ×B of the pair groupoid of B. We find

(T,S)−1({Id({x})}) = { [(p, rg(p))] ∣ p ∈ π−1P ({x}) ∧ g ∈ G } ,
and so we may associate with the preimage a pair (p, g) ∈ π−1P ({x}) × G up to the following
equivalence (determined by the definition of the class of the pair (p, rg(p)) in At(P))

(p, g) ∼ (rh−1(p),Adh(g)) ,
or, in other words,

[(p, g)] ∈ (AdP)x .
We are now in a position to sqeeze the Atiyah–Ehresmann for additional information, thereby

revealing its absolutely central status in the present discussion.
Proposition 10. Let us fix a point x∗ ∈ B in the base of a principal bundle ((P,B,G, πP), r),
and consider an embedding

Lx∗ ∶ B Ð→ B ×B ∶ xz→ (x∗, x) .
The preimage of the submanifold Lx∗(B) carries a canonical structure of a principal (G-)bundle,
and there exists a canonical isomorphism of principal bundles

(T,S)−1(Lx∗(B)) ≅ P .

Proof: We find, for an arbitrarily fixed point p∗ ∈ π−1P ({x∗}) in the fibre over x∗,

(T,S)−1({(x∗, x)}) = { [(p∗ ⊲ g, p)] ∣ p ∈ π−1P ({x}) ∧ g ∈ G } ,
from which we extract classes of pairs (p, g) subject to the obvious identification

(p, g) ∼ (rh(p), g ⋅ h) ,
or, in other words,

[(p, g)] ∈ (P ×℘ G)x .
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Here, P×℘G is the bundle associated to P by the right regular action of G on itself. The bundle
comes with a natural (right) G-action

(P ×℘ G) ×GÐ→ P ×℘ G ∶ ([(p, g)], h) z→ [(p, h−1 ⋅ g)] ,
and we readily verify that the map

P ×℘ GÐ→ P ∶ [(p, g)] z→ p ⊲ g−1

is a G-equivariant bundle isomorphism, whence

P ×℘ G ≅ P
as principal G-bundles. We note, in passing, that the G-space structure on P×℘G neatly accounts
for the freedom of choice of the reference point p∗. □

We crown our study of associated bundles with a result in which the induced (gauge) symmetry
structure of any such fibre bundle is neatly encapsulated, which we induce from that of the under-
lying principal bundle, as inscribed in the W-diagram (VI.9) of Thm. VI.2. The result illustrates
the deep and universal principle of descent along symmetry quotients (to be extended nontrivially
once we endow M with extra cohomological structure, in a physically motivated manner), and—à
la fois—reemphasises the rôle of the Atiyah–Ehresmann groupoid in this context. Before the main
dish, we serve an appetiser:
Proposition 11. For every principal bundle ((P,B,G, πP), r), a bundle (P ×λ M,B,M,πP×λM)
associated to it by an action λ ∶ G Ð→ Diff(M) carries a canonical structure of a left At(P)-
module with momentum πP×λM and action

Λ ∶ At(P)S×πP×λM
(P ×λ M) Ð→ P ×λ M ∶ ([(p2, p1)], [(p1,m)]) z→ [(p2,m)] .

Proof: The only non-obvious aspect of the above statement is the smoothness of the action. This is
best seen in the following convenient models of the two geometries involved, reconstructed through
(recursive) application of Thm. V.3. for an open cover {Oi}i∈I of B trivialising for the principal
bundle P:

● the Atiyah–Ehresmann groupoid

At(P) ≡ (P × P)//G ≡ P ×r○Inv P ≅ ⊔
j∈I
(P ×Oj)/ ∼rInv○g⋅⋅≅ ⊔

i,j∈I
(O(1)i ×G ×O(2)j )/ ∼ℓ

g
(1)⋅⋅
○℘

Inv○g(2)⋅⋅
;

● the associated bundle

P ×λ M ≅ ⊔
j∈I
(Oj ×M)/ ∼λg⋅⋅ .

As we shall presently consider a far-reaching generalisation of this scenario, we postpone the de-
tailed (and technical) proof until then, and in the meantime, leave the proof as an exercise for an
avid Reader. □

Corollary 1. The structure of a left At(P)-module on the associated bundle (P×λM,B,M,πP×λM)
gives rise to an action groupoid At(P)⋉Λ(P ×λ M) with object manifold P ×λ M , arrow manifold
At(P)S×πP×λM

(P ×λ M), and the following structure maps:
● the source map

ς ∶ At(P)S×πP×λM
(P ×λ M) Ð→ P ×λ M ∶ ([(p2, p1)], [(p1,m)]) z→ [(p1,m)] ;

● the target map τ ∶= Λ;
● the identity map

ι ∶ P ×λ M Ð→ At(P)S×πP×λM
(P ×λ M) ∶ [(p,m)] z→ ([(p, p)], [(p,m)]) ;

● the inverse map

ȷ ∶ At(P)S×πP×λM
(P ×λ M) ↺ ∶ ([(p2, p1)], [(p1,m)]) Ð→ ([(p1, p2)], [(p2,m)]) ;
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● the multiplication map

m ∶ (At(P)S×πP×λM
(P ×λ M))ς ×τ(At(P)S×πP×λM

(P ×λ M)) Ð→ At(P)S×πP×λM
(P ×λ M)

∶ (([(p3, p2)], [(p2,m)]), ([(p2, p1)], [(p1,m)])) z→ ([(p3, p1)], [(p1,m)]) .
. . . et maintenant ¡voilà:
Theorem 3. For every principal bundle ((P,B,G, πP), r) and every smooth manifold M with
a smooth action λ ∶ G Ð→ Diff(M), the manifold P ×M carries a canonical structure of a
principal-(At(P)⋉Λ(P ×λ M),G⋉λM)-bibundle object (in the sense of Def. VI.6.) in the category
Bun(B)/B, with the left At(P)-action fibring over the canonical left Pair(B)-action on the object
manifold B with typical fibre given by the canonical left G⋉λM -action on the object manifold M ,
as described succinctly by the extended W-diagram

G ×M� _

��

$,

G ×M� _

��

λ

zz
M� _

��

At(P)S×πP×λM
(P ×λ M)

$,
T×πP×λM

��

P ×M
π∼

{{

pr2

  
πP

��

G ×M

z�
P ×λ M

πP×λM

��

M

B ×B

$,

B

idB

zz
B

.(9)

Proof: Let us start by working out the ‘global’ right action of the action groupoid. In so doing, we
shall be guided by Prop. VI.8., which tells us that the sought-after G⋉λM -action on P×M should
be such that

(P ×M)//G⋉λM = P ×λ M ≡ (P ×M)//G ,

where the quotient on the right-hand side is the one with respect to the diagonal action λ̃ of
Cor. VI.1. Hence, we simply postulate

ϱ ∶ (P ×M)pr2×λ(G ×M) Ð→ P ×M ∶ ((p,m), (g, λg−1(m))) z→ λ̃g−1(p,m) ,
and subsequently check the axioms of Def. VI.4.:

● axiom (PGr1):

(GrM1) ∶ µ(λ̃g−1(p,m)) ≡ pr2(λ̃g−1(p,m)) ≡ pr2(rg(p), λg−1(m)) = λg−1(m) ≡ s(g, λg−1(m)) ,

(GrM2) ∶ ϱ((p,m), (e,m)) = λ̃e−1(p,m) = (p,m) ,

(GrM3) ∶ ϱ(ϱ((p,m), (g, λg−1(m))), (h,λh−1g−1(m))) = λ̃h−1(λ̃g−1(p,m)) = λ̃(gh)−1(p,m)

≡ ϱ((p,m), (gh, λ(gh)−1(m))) ≡ ϱ((p,m), (g, λh(λ(gh)−1(m))).(h,λ(gh)−1(m)))

= ϱ((p,m), (g, λg−1(m)).(h,λh−1g−1(m))) ;

● axiom (PGr2): π∼(λ̃g−1(p,m)) ≡ [λ̃g−1(p,m)] = [(p,m)] ≡ π∼(p,m);
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● axiom (PGr3): the map

(pr1, (ϕP ○ pr1,3,pr4)) ∶ (P ×M)π∼×π∼(P ×M) Ð→ (P ×M)pr2×λ(G ×M)

∶ ((p1,m1), (p2,m2)) z→ ((p1,m1), (ϕP(p1, p2),m2)) ,
which is well-defined (and manifestly smooth) due to the following identities:

πP(p2) ≡ πP×λ([(p2,m2)]) ≡ (πP×λ ○ π∼)(p2,m2) = (πP×λ ○ π∼)(p1,m1) ≡ πP×λ([(p1,m1)]) ≡ πP(p1) ,

[(p1, λϕP(p1,p2)(m2))] = [(p1 ⊲ ϕP(p1, p2),m2)] = [(p2,m2)] ≡ π∼(p2,m2) = π∼(p1,m1) ≡ [(p1,m1)] ,
is an inverse of (pr1, ϱ), as verified in direct calculation

((pr1, (ϕP ○ pr1,3,pr4)) ○ (pr1, ϱ))((p,m), (g, λg−1(m)))

= (pr1, (ϕP ○ pr1,3,pr4))((p,m), (rg(p), λg−1(m))) = ((p,m), (ϕP(p, rg(p)), λg−1(m)))

= ((p,m), (g, λg−1(m))) ,

((pr1, ϱ) ○ (pr1, (ϕP ○ pr1,3,pr4)))((p1,m1), (p2,m2)) = (pr1, ϱ)((p1,m1), (ϕP(p1, p2),m2))

= ((p1,m1), (p1 ⊲ ϕP(p1, p2), λϕP(p1,p2)−1(m1))) = ((p1,m1), (p2,m2)) .
Next, we postulate the left action, along the momentum µ⃗ ≡ π∼, in the natural form

λ⃗ ∶ (At(P)S×πP×λM
(P ×λ M))pr2 ×π∼(P ×M) Ð→ P ×M

∶ (([(p2, p1)], [(p1,m)]), (p1,m)) z→ (p2,m) ,
and check the axioms of Def. VI.4., adapted to the left action:

● axiom (PGr1):

(GrM1) ∶ µ⃗(p2,m) = [(p2,m)] = Λ[(p2,p1)]([(p1,m)]) ,

(GrM2) ∶ λ⃗ι[(p,m)](p,m) ≡ λ⃗[(p,p)],[(p,m)])(p,m) = (p,m) ,

(GrM3) ∶ λ⃗([(p3,p2)],[(p2,m)])(λ⃗([(p2,p1)],[(p1,m)])(p1,m)) = λ⃗([(p3,p2)],[(p2,m)])((p2,m))

= (p3,m) ≡ λ⃗([(p3,p1)],[(p1,m)])(p1,m) ≡ λ⃗m(([(p3,p2)],[(p2,m)]),([(p2,p1)],[(p1,m)]))(p1,m) ;
● axiom (PGr2): pr2(λ⃗([(p2,p1)],[(p1,m)])(p1,m)) ≡ pr2(p2,m) =m ≡ pr2(p1,m);
● axiom (PGr3): the map

(ϕ⃗,pr2) ∶ (P ×M)pr2×pr2(P ×M) Ð→ (At(P)S×πP×λM
(P ×λ M))pr2 ×π∼(P ×M)

∶ ((p2,m), (p1,m)) z→ (([(p2, p1)], [(p1,m)]), (p1,m)) ,

is the inverse of (λ⃗,pr2).
Finally, the commutation of the two actions is verified in a direct calculation:

λ⃗([(p2,rg(p1))],[(rg(p1),λg−1(m))])(ϱ((p1,m), (g, λg−1(m))))

= λ⃗([(p2,rg(p1))],[(rg(p1),λg−1(m))])((rg(p1), λg−1(m))) = (p2, λg−1(m))

≡ ϱ((rg−1(p2),m), (g, λg−1(m))) ≡ ϱ(λ⃗([(rg−1(p2),p1)],[(p1,m)])(p1,m), (g, λg−1(m)))

= ϱ(λ⃗([(p2,rg(p1))],[(p1,m)])(p1,m), (g, λg−1(m))) = ϱ(λ⃗([(p2,rg(p1))],[(rg(p1),λg−1(m))])(p1,m), (g, λg−1(m))) .
□
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In view of its significance, and amenability to useful generalisations, we formalise the structure
encountered above in
Definition 3. Let GA

//// MA, A ∈ {1,2,3} be Lie groupoids, let P̂ be a principal (G1,G2)-
bibundle, as in Def. VI.6., and let B be a manifold. We shall call the quintuple (G1, P̂ ,G2;B,G3)
a (left) Trident with base B and (left) fibre G3 if the following conditions are satisfied:

● P̂ is the total space of a fibre bundle πP̂ ∶ P̂ → B with base B and typical fibre G3;
● the right G2-action ρ2 ≡ ◂ preserves πP̂ -fibres, i.e., πP̂ (p ◂ g2) = πP̂ (p) for all (p, g2) ∈
P̂µ2×t2 G2 ;
● the Lie groupoid G1

//// M1 is the total space of a fibre-bundle object in the category of
Lie groupoids, with base Pair(B) and typical fibre G3

//// M3

● the G1-module structure on P̂ covers the canonical left Pair(B)-module structure on B,
and is modelled on the canonical left G3-module structure on G3 (in a local trivialisation),
as captured by the diagram:

G3

!)

� _

��

G3

t3{{

� _

��

M3� _

��

G1

!)
πG1

��

P̂

µ1{{
πP̂

��

M1

πM1

��

B ×B

"*

B

idBzz
B

.

The Trident shall be represented by the following diagram:

G3� _

��

�%

G3� _

��

t3

��
M3� _

��

G1

πG1

��

�$

P̂

µ1

��

µ2

��
πP̂

��

G2

}�
M1

πM1

��

M2

B ×B

�%

B

idB��
B

.(10)

Upon recalling the original conceptual interpretation of the Atiyah–Ehresmann groupoid in the
contex of groupoidal implementation of automorphisms of the underlying principal bundle P, and
upon inspection of the above-postulated action of the attendant action groupoid At(P)⋉Λ(P×λM)
on the total space P×M of the surjective submersion π∼ ∶ P×M Ð→ P×λM , along which physically
relevant automorphisms of its (matter-field) base P×λM are induced from those of P×M (realised
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by that action), it becomes clear that the Trident encodes complete information about the complex
mechanism of transmission—via association—of gauge symmetries, locally modelled on smooth
profiles O Ð→ G

λÐÐ→ Diff(M), O ∈ T (B) (capturing the fibre component of the transformation,
which comes on top of an iner-subjectivising diffeomorphism of the base B), from the ‘space of
local frames’ P to the ‘space of fields amenable to observation/description in the local frames’
P×λM . More specifically, we may inscribe symmetry transformations Φ directly into the Trident,
and in so doing provide a geometrisation of the induction scheme of Prop. IV.78.—this we acjieve
by evaluating/restricting the action of At(P)⋉Λ(P ×λ M) on/to images βΦ(P ×λ M) of the base
P ×λ M of the groupoid under those of its global bisections, βΦ, which cover global bisections
(f, idB), f ∈ Diff(B) of the base Pair(B) of the (gauge-)symmetry model

G⋉λM �
� // At(P)⋉Λ(P ×λ M)

(T×πP×λM ,πP×λM )

��
Pair(B)

.

(a bundle object in the category of Lie groupoids, see Prop. VI.10.). Of course, the mechanism just
described restricts to the subgroupoid

AdPπP
×πP×λM

(P ×λ M) ≡ AdPS×πP×λM
(P ×λ M) �

� ȷAdP // At(P)S×πP×λM
(P ×λ M)

over Id(B) ⊂ B ×B and its global bisections, which—accordingly—encodes the ‘subjective’ com-
ponent of the gauge symmetry. We may also put global bisections β of the global symmetry model
G⋉λM in the same picture.

Altogether, we arrive at the following beastly Bisection-Extended Trident, or the Diving Falcon:

G ×M� _

��

'/

G ×M� _

��

λ

yy
M� _

��

AdPπP
×πP×λM

(P ×λ M)
� � //

��

At(P)S×πP×λM
(P ×λ M)

'/
π

����

βΦ(P ×λ M)? _oo P ×M

π∼

zz

pr2

""
πP○pr1

��

β(M)
� � // G ×M

qy
P ×λ M

πP×λM

��

βΦ

ee

M

β

<<

B ≅ Id(B)
� � // B ×B

'/

(f, idB)(B)? _oo B

idB

zz
B

(f,idB)
ff

,

(11)

which summarises our findings and sets the stage for generalisations.
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