next up previous
Next: Summary Up: Axial symmetry Previous: Two-dimensional rotational symmetry SO


Two-dimensional rotational and mirror symmetry O $ ^{z\perp }(2)$

It follows from the S$ _z$ invariance of the density matrices (1) and (2) that $ \rho (\bm{r},\bm{r}')$ and $ \bm{s}_z(\bm{r},\bm{r}')$ do not change signs under S$ _z$, while $ \bm{s}_{\perp}(\bm{r},\bm{r}')$ does. All scalar functions invariant under S$ _z$ depend on $ z$, $ z'$ only through $ z^2=\bm{r}_z\cdot\bm{r}_z$, $ z^{\prime
2}=\bm{r}'_z\cdot\bm{r}'_z$, and $ zz'=\bm{r}_z\cdot\bm{r}'_z$. For instance, Eq. (31) for the nonlocal scalar density now takes the form

$\displaystyle \rho (\bm{r}, \bm{r}')=\varrho_0(z^2,zz',z'^2,r^2_{\perp},\bm{r}_{\perp}\cdot\bm{r}'_{\perp},r^{\prime 2}_{\perp}).$ (43)

There exist two pseudoscalars formed from $ \bm{r}_z$, $ \bm{r}'_z$, $ \bm{r}_{\perp}$, $ \bm{r}'_{\perp}$, namely $ \bm{r}_z\cdot(\bm{r}_{\perp}\times\bm{r}'_{\perp})$ and $ \bm{r}'_z\cdot(\bm{r}_{\perp}\times\bm{r}'_{\perp})=(zz'/z^2)\bm{r}_z\cdot(\bm{r}_{\perp}\times\bm{r}'_{\perp})$ equal to each other up to the scalar factor $ zz'/z^2$. The square $ (\bm{r}_z\cdot(\bm{r}_{\perp}\times\bm{r}'_{\perp}))^2
=z^2(r^2_{\perp}r'^2_{\perp}-(\bm{r}_{\perp}\cdot\bm{r}'_{\perp})^2)$ is, of course, a scalar.

To fulfill the transformation rules, the general forms of Eqs. (32) and (33) of the components of the nonlocal spin density should be modified in the following way:

$\displaystyle \bm{s}_z(\bm{r}, \bm{r}')$ $\displaystyle =$ $\displaystyle (\bm{r}_z\cdot(\bm{r}_{\perp}\times\bm{r}'_{\perp}))\varrho_z(z^2...
...2,r^2_{\perp},\bm{r}_{\perp}\cdot\bm{r}'_{\perp},r^{\prime 2}_{\perp})
\bm{r}_z$  
    $\displaystyle +(\bm{r}'_z\cdot(\bm{r}_{\perp}\times\bm{r}'_{\perp}))
\varrho_z'...
...2,r^2_{\perp},\bm{r}_{\perp}\cdot\bm{r}'_{\perp},r^{\prime 2}_{\perp})\bm{r}'_z$  
    $\displaystyle +\varphi_z(z^2,zz',z'^2,r^2_{\perp},\bm{r}_{\perp}\cdot\bm{r}'_{\perp},r^{\prime 2}_{\perp})(\bm{r}_{\perp}\times\bm{r}'_{\perp}),$ (44)

and
$\displaystyle \bm{s}_{\perp}(\bm{r}, \bm{r}')$ $\displaystyle =$ $\displaystyle (\bm{r}_z\cdot(\bm{r}_{\perp}\times\bm{r}'_{\perp}))
\varrho_{\pe...
..._{\perp},\bm{r}_{\perp}\cdot\bm{r}'_{\perp},r^{\prime 2}_{\perp})\bm{r}_{\perp}$  
    $\displaystyle +(\bm{r}'_z\cdot(\bm{r}_{\perp}\times\bm{r}'_{\perp}))
\varrho_{\...
...{\perp},\bm{r}_{\perp}\cdot\bm{r}'_{\perp},r^{\prime 2}_{\perp})\bm{r}'_{\perp}$  
    $\displaystyle +\varphi_{\perp}(z^2,zz',z'^2,r^2_{\perp},\bm{r}_{\perp}\cdot\bm{r}'_{\perp},r^{\prime 2}_{\perp})(\bm{r}_z\times\bm{r}_{\perp})$  
    $\displaystyle +\varphi_{\perp}'(z^2,zz',z'^2,r^2_{\perp},\bm{r}_{\perp}\cdot\bm{r}'_{\perp},r^{\prime 2}_{\perp})(\bm{r}'_z\times\bm{r}'_{\perp}).$ (45)

It follows from Eqs. (43), (44), and (45) that the local zero-order densities for $ \bm{r}_z =\bm{r}'_z$ and $ \bm{r}_{\perp}=\bm{r}'_{\perp}$ can be written in the general form:

$\displaystyle \rho (\bm{r})$ $\displaystyle =$ $\displaystyle \rho_0(z^2,r^2_{\perp}),$ (46)
$\displaystyle \bm{s}_z(\bm{r})$ $\displaystyle =$ $\displaystyle 0,$ (47)
$\displaystyle \bm{s}_{\perp}(\bm{r})$ $\displaystyle =$ $\displaystyle \phi_{\perp}(z^2,r^2_{\perp})(\bm{r}_z\times\bm{r}_{\perp}).$ (48)

The local kinetic density $ \tau (\bm{r})$ is of the form (46) too. On the other hand, the pseudoscalar density $ J(\bm{r})$ vanishes. The densities $ \bm{T}(\bm{r})$ and $ \bm{F}(\bm{r})$, are pseudovectors; hence, they take the form (48). On the other hand, vectors $ \bm{j}(\bm{r})$ and $ \bm{J}(\bm{r})$ are linear combinations of the components of the position vector:

$\displaystyle \bm{j}(\bm{r})=\iota_z(z^2,r^2_{\perp})\bm{r}_z+\iota_{\perp}(z^2,r^2_{\perp})\bm{r}_{\perp}.$ (49)

The spin-curl $ \bm{J}(\bm{r})$ takes a similar form to that of (49). Finally, $ \underline{\mathsf{J}}(\bm{r})$ is a pseudotensor. Therefore, as follows from (25), its general form is given by:
$\displaystyle \underline{\mathsf{J}}(\bm{r})$ $\displaystyle =$ $\displaystyle \theta_{zz\perp}(z^2,r^2_{\perp})\underline{\bm{r}_z\otimes(\bm{r}_z\times\bm{r}_{\perp})}$  
  $\displaystyle +$ $\displaystyle \theta_{\perp z\perp}(z^2,r^2_{\perp})\underline{\bm{r}_{\perp}\otimes(\bm{r}_z\times\bm{r}_{\perp})}.$ (50)


next up previous
Next: Summary Up: Axial symmetry Previous: Two-dimensional rotational symmetry SO
Jacek Dobaczewski 2010-01-30