next up previous
Next: Bibliography Up: Gamow-Teller strength and the Previous: Landau Parameters from the


Residual Interaction in Finite Nuclei

Equation (14) gives the most general form of the residual interaction in finite nuclei. Only a few terms contribute to the 1+ isovector excitations of the even-even nuclei we are interested in. First of all, only the isovector densities contribute. Next, the conditions $\Delta J=1$ and $\Delta \pi = 0$ between ground state and excited states imply that the only terms in the energy functional that can contribute are quadratic in local tensor or vector parity-even densities/currents. As can be seen from Table 2 in [20], all possible contributions are time-odd. One finally obtains
$\displaystyle {
v_{\rm res} (\vec{r}_1, \vec{r}_2)
}$
  = $\displaystyle \frac{\delta^2 {\cal E}}
{\delta \vec{s}_{1 t} (\vec{r}_1) \,
\de...
...a$}}}_2) \,
(\mbox{{\boldmath {$\tau$}}}_1 \cdot \mbox{{\boldmath {$\tau$}}}_2)$  
  = $\displaystyle \Big[ 2 C_1^{s} [\rho_{00}] \; \delta (\vec{r}_1 - \vec{r}_2)$  
    $\displaystyle + {\textstyle\frac{{1}}{{2}}} ( C_1^{T} - 4 C_1^{\Delta s} ) \;
(...
...a (\vec{r}_1 - \vec{r}_2)
+ \delta (\vec{r}_1 - \vec{r}_2)\hat{\vec{k}}{}^{2} )$  
    $\displaystyle + ( 3 C_1^{T} + 4 C_1^{\Delta s} ) \;
\hat{\vec{k}}{}' \cdot \del...
...;
\hat{\mbox{{\boldmath {$\tau$}}}}_1 \cdot \hat{\mbox{{\boldmath {$\tau$}}}}_2$  
    $\displaystyle - 2 \mbox{\rm\scriptsize {i}}C_1^{\nabla J} \;
\hat{\mbox{{\boldm...
...t
\hat{\vec{k}}{}^\prime \times \delta (\vec{r}_1 - \vec{r}_2) \,
\hat{\vec{k}}$  

where $\hat{\vec{k}}$ and $\hat{\vec{k}}{}^\prime$ are defined in Appendix 8. Since the coupling constants depend only on the scalar isoscalar density $\rho_{00}$, there are no rearrangement terms in the spin-isospin channel of the residual interaction. Unsymmetrized proton-neutron matrix elements of this interaction are to be inserted into the QRPA equations as outlined in Ref. [11].
next up previous
Next: Bibliography Up: Gamow-Teller strength and the Previous: Landau Parameters from the
Jacek Dobaczewski
2002-03-15