next up previous
Next: Residual Interaction in Finite Up: Gamow-Teller strength and the Previous: Landau Parameters from the


Landau Parameters from the Gogny force

The residual interaction in INM from the Gogny force [59]
$\displaystyle {V_{\rm Gogny}(\vec{r}_1, \vec{r}_2)}$
  = $\displaystyle \sum_{i=1,2} \big(
W_i
+ B_i \hat{P}_\sigma
+ H_i \hat{P}_\tau
- M_i \hat{P}_\sigma \hat{P}_\tau
\big) {\rm e}^{-(\vec{r}_{1}-\vec{r}_2)^2/\mu_i^2}$  
    $\displaystyle + t_0 ( 1 + x_0 \hat{P}_\sigma) \;
\rho_0^\alpha \left({\textstyl...
...ec{r}_2}}{{2}}}\right) \,
\delta (\vec{r}_1 - \vec{r}_2)
\phantom{\sum_{i=1,2}}$  
    $\displaystyle + \mbox{\rm\scriptsize {i}}W_0 \,
( \hat{\mbox{{\boldmath {$\sigm...
...) \cdot
\hat{\vec{k}}{}' \times
\delta (\vec{r}_1 - \vec{r}_2) \,
\hat{\vec{k}}$ (67)

(see Appendix 8 for the definition of $\hat{\vec{k}}$, $\hat{\vec{k}}{}^\prime$, $\hat{P}_\sigma$, and $\hat{P}_\tau$) has been discussed in [74,75]. Evaluating the expressions given in [75] for $(k, k', q) = (k_{\rm F}, k_{\rm F}, 0)$, one obtains the usual Landau parameters
$\displaystyle f_\ell$ = $\displaystyle \sum_{i=1,2}
\big[ ( 4 W_i + 2 B_i - 2 H_i - M_i ) \Psi^{(i)}_\ell$  
    $\displaystyle \phantom{\sum}
+ ( - W_i - 2 B_i + 2 H_i + 4 M_i ) \Phi^{(i)}_\ell
\big]$  
    $\displaystyle \phantom{\sum}
+ \delta_{\ell 0} \,
{\textstyle\frac{{3}}{{8}}} t_0 \, (\alpha + 1) (\alpha + 2) \, \rho_0^\alpha$  
$\displaystyle f_\ell'$ = $\displaystyle \sum_{i=1,2}
\big[ - ( 2 H_i + M_i ) \Phi^{(i)}_\ell
- ( W_i - 2 B_i ) \Psi^{(i)}_\ell
\big]$  
    $\displaystyle + \delta_{\ell 0} \,
{\textstyle\frac{{1}}{{4}}} t_0 \, (1 + 2 x_0) \rho_0^\alpha$  
$\displaystyle g_\ell$ = $\displaystyle \sum_{i=1,2}
\big[ ( 2 B_i - M_i ) \Psi^{(i)}_\ell
+ ( - W_i + 2 H_i ) \Phi^{(i)}_\ell
\big]$  
    $\displaystyle + \delta_{\ell 0} \,
{\textstyle\frac{{1}}{{4}}} t_0 \, (1 - 2 x_0) \rho_0^\alpha$  
$\displaystyle g_\ell'$ = $\displaystyle - \sum_{i=1,2}
\big( M_i \Psi^{(i)}_\ell + W_i \Phi^{(i)}_\ell \big)
+ \delta_{\ell 0} \, {\textstyle\frac{{1}}{{4}}} t_0 \, \rho_0^\alpha$ (68)

where
$\displaystyle \Psi^{(i)}_\ell$ = $\displaystyle {\textstyle\frac{{1}}{{4}}} \pi^{3/2} \mu_i^3 \, N_0 \; \delta_{\ell 0}$  
$\displaystyle \Phi^{(i)}_0$ = $\displaystyle {\textstyle\frac{{1}}{{4}}} \pi^{3/2} \mu_i^3 \, N_0 \;
{\rm e}^{-z} \; \frac{\sinh (z)}{z}$  
$\displaystyle \Phi^{(i)}_1$ = $\displaystyle {\textstyle\frac{{3}}{{4}}} \pi^{3/2} \mu_i^3 \, N_0 \; {\rm e}^{-z}
\left(\frac{\cosh (z)}{z} - \frac{\sinh (z)}{z^2}\right)$  
$\displaystyle \Phi^{(i)}_2$ = $\displaystyle {\textstyle\frac{{5}}{{4}}} \pi^{3/2} \mu_i^3 \, N_0 \; {\rm e}^{...
...h(z) \left(\frac{1}{z} + \frac{3}{z^3} \right)
- \frac{3 \cosh(z)}{z^2}
\right]$  

with $z= \mu_i^2 k_{\rm F}^2 /2$. The normalization factor N0 is again given by (69).
next up previous
Next: Residual Interaction in Finite Up: Gamow-Teller strength and the Previous: Landau Parameters from the
Jacek Dobaczewski
2002-03-15