Zero-order functional

The leading order functional, which depends on four parameters $t_0$, $x_0$, $y_0$, and $z_0$ of the regularized interaction (38), has the form

\begin{displaymath}
\langle V_0\rangle=\langle V_0^L \rangle + \langle V_0^{N} \rangle ,
\end{displaymath} (69)

with
$\displaystyle \langle V_0^L \rangle$ $\textstyle =$ $\displaystyle \int\!
\mathrm d\mathbf r_1\,\mathrm d\mathbf r_2\,g_a(\mathbf r_...
...f r_1)\rho_0(\mathbf r_2)
+ A^{\rho_1}_0 \rho_1(\mathbf r_1)\rho_1(\mathbf r_2)$  
    $\displaystyle + A^{\mathbf s_0}_0 \mathbf s_0(\mathbf r_1)\cdot\mathbf s_0(\mat...
... A^{\mathbf s_1}_0 \mathbf s_1(\mathbf r_1)\cdot\mathbf s_1(\mathbf r_2)
\Bigr]$ (70)

and
$\displaystyle \langle V_0^{N} \rangle$ $\textstyle =$ $\displaystyle \int\!
\mathrm d\mathbf r_1\,\mathrm d\mathbf r_2\, g_a(\mathbf r...
...gl[
B^{\rho_0}_0 \rho_0(\mathbf r_2,\mathbf r_1)\rho_0(\mathbf r_1,\mathbf r_2)$  
    $\displaystyle +B^{\rho_1}_0 \rho_1(\mathbf r_2,\mathbf r_1)\rho_1(\mathbf r_1,\mathbf r_2)$  
    $\displaystyle +B^{\mathbf s_0}_0 \mathbf s_0(\mathbf r_2,\mathbf r_1)\cdot\math...
...f s_1(\mathbf r_2,\mathbf r_1)\cdot\mathbf s_1(\mathbf r_1,\mathbf r_2)
\Bigr].$ (71)

Densities $\rho_0(\bm{r})$, $\rho_1(\bm{r})$, $\mathbf s_0(\bm{r})$, and $\mathbf s_1(\bm{r})$, together with their nonlocal counterparts, are the standard scalar and vector densities in spin and isospin spaces, as defined in Ref. [23]. By taking the zero-range limit, which amounts to bringing in Eqs. (71) and (72) the regularized delta function $g_a(\bm{r})$ to its Dirac delta limit, and using relations (62), one recovers the standard local form of the zero-order functional,
$\displaystyle \langle V_0\rangle=$ $\textstyle {\textstyle{\frac{1}{2}}}\,t_0\int\!
\mathrm d\mathbf r\,
\Bigl\{{\t...
...\left(1+z_0\right)+{\textstyle{\frac{1}{2}}}\left(x_0+y_0\right)\right]\rho_1^2$    
  $\textstyle -\left[{\textstyle{\frac{1}{4}}}\left(1+z_0\right)-{\textstyle{\frac...
...athbf s_0^2
-{\textstyle{\frac{1}{4}}}\left(1+ z_0\right)\mathbf s_1^2
\Bigr\}.$   (72)

We explicitly verified that the Cartesian zero-order nonlocal EDF (70) is exactly equivalent to that in the spherical-tensor representation. To show this equivalence, we made use of the relations of conversions between spherical and Cartesian local densities [9], which are also valid for nonlocal densities. In the same way, one finds the relations of conversions between the parameters of the zero-order regularized pseudopotential (3) and those of its Cartesian form (38), which read

$\displaystyle C_{00,00}^{00,0}$ $\textstyle =$ $\displaystyle t_0+ \frac{1}{2}t_0x_0,$ (73)
$\displaystyle C_{00,00}^{00,1}$ $\textstyle =$ $\displaystyle -\frac{1}{2}t_0z_0-t_0y_0,$ (74)
$\displaystyle C_{00,20}^{00,0}$ $\textstyle =$ $\displaystyle -\frac{\sqrt{3}}{2} t_0x_0 ,$ (75)
$\displaystyle C_{00,20}^{00,1}$ $\textstyle =$ $\displaystyle \frac{\sqrt{3}}{2} t_0z_0.$ (76)

Jacek Dobaczewski 2014-12-07