Second-order functional

At NLO, one obtains the EDF corresponding to the $i=1$ term of the regularized pseudopotential (43) by applying on all possible bilinear densities the relative-momentum operator:

$\displaystyle \bm{k}'^*{}^2+ \bm{k}^2$ $\textstyle =$ $\displaystyle -{\textstyle{\frac{1}{4}}}\left(\bm{\nabla}'_1{}^2-2\bm{\nabla}'_...
...
+\bm{\nabla} _1 ^2-2\bm{\nabla} _1\cdot\bm{\nabla} _2+\bm{\nabla} _2^2\right).$ (77)

Using once again for densities the same notations as in Ref. [23], we get the quasilocal term,
$\displaystyle \hspace*{-2cm}
\langle V_1^L \rangle$ $\textstyle =$ $\displaystyle -{\textstyle{\frac{1}{2}}}\int\!
\mathrm d\mathbf r_1\,\mathrm d\mathbf r_2\,g_a(\mathbf r_1-\mathbf r_2)$  
$\textstyle \times$ $\displaystyle \biggl\{
A_1^{\rho_0}
\Bigl[
\left[{\textstyle{\frac{1}{2}}}\,\De...
...rho_0(\mathbf r_2)
+\mathbf j_0(\mathbf r_1)\cdot\mathbf j_0(\mathbf r_2)\Bigr]$  
  $\displaystyle + A_1^{\rho_1}
\Bigl[
\left[{\textstyle{\frac{1}{2}}}\,\Delta\rho...
...rho_1(\mathbf r_2)
+\mathbf j_1(\mathbf r_1)\cdot\mathbf j_1(\mathbf r_2)\Bigr]$  
  $\displaystyle + A_1^{\mathbf s_0}
\Bigl[
\left[{\textstyle{\frac{1}{2}}}\,\Delt...
...f s_0(\mathbf r_1)-\mathbf T_0(\mathbf r_1)\right]\cdot\mathbf s_0(\mathbf r_2)$  
  $\displaystyle ~~~~~~~~
-{\textstyle{\frac{1}{4}}}\,\boldsymbol\nabla \otimes\ma...
... s_0(\mathbf r_2)
+\mathsf J_0(\mathbf r_1)\cdot\mathsf J_0(\mathbf r_2)
\Bigr]$  
  $\displaystyle + A_1^{\mathbf s_1}
\Bigl[
\left[{\textstyle{\frac{1}{2}}}\,\Delt...
...f s_1(\mathbf r_1)-\mathbf T_1(\mathbf r_1)\right]\cdot\mathbf s_1(\mathbf r_2)$  
  $\displaystyle ~~~~~~~~
-{\textstyle{\frac{1}{4}}}\,\boldsymbol\nabla \otimes\ma...
...hbf r_2)
+\mathsf J_1(\mathbf r_1)\cdot\mathsf J_1(\mathbf r_2)
\Bigr] \biggr\}$ (78)

and the nonlocal term,
$\displaystyle \hspace*{-2cm}
\langle V_1^{N}\rangle$ $\textstyle =$ $\displaystyle -{\textstyle{\frac{1}{4}}}\int\!
\mathrm d\mathbf r_1\,\mathrm d\mathbf r_2\,g_a(\mathbf r_1-\mathbf r_2)$  
$\textstyle \times$ $\displaystyle \biggl\{
B_1^{\rho_0}
\left[
\rho_0(\mathbf r_2,\mathbf r_1)\Delt...
...f r_2)
-2\rho_0(\mathbf r_2,\mathbf r_1)\tau_0(\mathbf r_1,\mathbf r_2) \right.$  
  $\displaystyle \left. ~~~~~~-{\textstyle{\frac{1}{2}}}\boldsymbol\nabla \rho_0(\...
... r_2,\mathbf r_1)\cdot\boldsymbol\nabla \rho_0(\mathbf r_1,\mathbf r_2)
\right]$  
  $\displaystyle + B_1^{\rho_1}
\left[
\rho_1(\mathbf r_2,\mathbf r_1)\Delta\rho_1...
...f r_2)
-2\rho_1(\mathbf r_2,\mathbf r_1)\tau_1(\mathbf r_1,\mathbf r_2) \right.$  
  $\displaystyle \left. ~~~~~~-{\textstyle{\frac{1}{2}}}\boldsymbol\nabla \rho_1(\...
... r_2,\mathbf r_1)\cdot\boldsymbol\nabla \rho_1(\mathbf r_1,\mathbf r_2)
\right]$  
  $\displaystyle + B_1^{\mathbf s_0}
\left[
\mathbf s_0(\mathbf r_2,\mathbf r_1)\c...
... s_0(\mathbf r_2,\mathbf r_1)\cdot \mathbf T_0(\mathbf r_1,\mathbf r_2) \right.$  
  $\displaystyle \left.~~~~~~ -{\textstyle{\frac{1}{2}}}\boldsymbol\nabla \otimes\...
... J_0(\mathbf r_2,\mathbf r_1)\cdot \mathsf J_0(\mathbf r_1,\mathbf r_2)
\right]$  
  $\displaystyle + B_1^{\mathbf s_1}
\left[
\mathbf s_1(\mathbf r_2,\mathbf r_1)\c...
... s_1(\mathbf r_2,\mathbf r_1)\cdot \mathbf T_1(\mathbf r_1,\mathbf r_2) \right.$  
  $\displaystyle \left.~~~~~~ -{\textstyle{\frac{1}{2}}}\boldsymbol\nabla \otimes\...
...thbf r_2,\mathbf r_1)\cdot\mathsf J_1(\mathbf r_1,\mathbf r_2)
\right]\biggr\}.$ (79)

In Eqs. (79) and (80), similarly as in Sec. 2, depending on the context, the nabla operator $\boldsymbol\nabla $ acts on the local densities as $\boldsymbol\nabla _1$ or $\boldsymbol\nabla _2$ and on the nonlocal densities as $\boldsymbol\nabla _1+\boldsymbol\nabla _2$.

By taking the local limit of functionals (79) and (80), we again recover the quasilocal Cartesian EDF, which reads

$\displaystyle \langle V_1\rangle=
{\textstyle{\frac{1}{4}}}\,t_1\int\!
\mathrm d\mathbf r\,$ $\textstyle {\textstyle{\frac{3}{4}}}\left(1+z_1\right)
\left[\tau_0\rho_0-\mathbf j_0^2-{\textstyle{\frac{3}{4}}}\rho_0\Delta\rho_0\right]$    
  $\textstyle -\left[{\textstyle{\frac{1}{4}}}\left(1+z_1\right)+{\textstyle{\frac...
...[ \tau_1\rho_1-\mathbf j_1^2-{\textstyle{\frac{3}{4}}}\rho_1\Delta\rho_1\right]$    
  $\textstyle -\left[{\textstyle{\frac{1}{4}}}\left(1+z_1\right)-{\textstyle{\frac...
...thsf J_0^2-{\textstyle{\frac{3}{4}}}\,\mathbf s_0\cdot\Delta\mathbf s_0 \right]$    
  $\textstyle -{\textstyle{\frac{1}{4}}}\left(1+z_1\right)
\left[\mathbf T_1\cdot\...
...hsf J_1^2-{\textstyle{\frac{3}{4}}}\,\mathbf s_1\cdot\Delta\mathbf s_1 \right].$   (80)

Finally, one obtains the EDF corresponding to the $i=2$ term of the regularized pseudopotential (44) using the relative-momentum operator:

$\displaystyle \bm{k}'^*\cdot\bm{k}$ $\textstyle =$ $\displaystyle {\textstyle{\frac{1}{4}}}\left(\bm{\nabla}'_1\cdot\bm{\nabla}_1-\...
...a}_1
+\bm{\nabla}'_2\cdot\bm{\nabla}_2-\bm{\nabla}'_1\cdot\bm{\nabla}_2\right),$ (81)

with the result
$\displaystyle \hspace*{-2cm}
\langle V_2^L \rangle$ $\textstyle =$ $\displaystyle {\textstyle{\frac{1}{2}}}\int\!\mathrm d\mathbf r_1\,\mathrm d\mathbf r_2\, g_a(\mathbf r_1-\mathbf r_2)$  
$\textstyle \times$ $\displaystyle \biggl\{
A_2^{\rho_0}
\left[ \rho_0(\mathbf r_1)\tau_0(\mathbf r_...
...o_0(\mathbf r_2)
-\mathbf j_0(\mathbf r_1)\cdot\mathbf j_0(\mathbf r_2)
\right]$  
  $\displaystyle + A_2^{\rho_1}
\left[ \rho_1(\mathbf r_1)\tau_1(\mathbf r_2)
-{\t...
...o_1(\mathbf r_2)
-\mathbf j_1(\mathbf r_1)\cdot\mathbf j_1(\mathbf r_2) \right]$  
  $\displaystyle + A_2^{\mathbf s_0}
\left[ \mathbf s_0(\mathbf r_1)\cdot\mathbf T...
...s_0(\mathbf r_2)
-\mathsf J_0(\mathbf r_1)\cdot\mathsf J_0(\mathbf r_2) \right]$  
  $\displaystyle + A_2^{\mathbf s_1}
\left[ \mathbf s_1(\mathbf r_1)\cdot\mathbf T...
...bf r_2)
-\mathsf J_1(\mathbf r_1)\cdot\mathsf J_1(\mathbf r_2) \right]
\biggr\}$ (82)

and
$\displaystyle \hspace*{-2cm}
\langle V_2^{N}\rangle$ $\textstyle =$ $\displaystyle {\textstyle{\frac{1}{2}}}\int\!\mathrm d\mathbf r_1\,\mathrm d\mathbf r_2\, g_a(\mathbf r_1-\mathbf r_2)$  
$\textstyle \times$ $\displaystyle \biggl\{
B_2^{\rho_0}
\left[{\textstyle{\frac{1}{4}}}
\boldsymbol...
...bf r_2)
-\rho_0(\mathbf r_2,\mathbf r_1)\tau_0(\mathbf r_1,\mathbf r_2) \right]$  
  $\displaystyle +
B_2^{\rho_1}
\left[{\textstyle{\frac{1}{4}}}
\boldsymbol\nabla ...
...bf r_2)
-\rho_1(\mathbf r_2,\mathbf r_1)\tau_1(\mathbf r_1,\mathbf r_2)
\right]$  
  $\displaystyle +
B_2^{\mathbf s_0}
\left[ {\textstyle{\frac{1}{4}}}\boldsymbol\n...
... J_0(\mathbf r_2,\mathbf r_1)\cdot \mathsf J_0(\mathbf r_1,\mathbf r_2) \right.$  
  $\displaystyle \left.~~~~~~ - \mathbf s_0(\mathbf r_2,\mathbf r_1)\cdot \mathbf T_0(\mathbf r_1,\mathbf r_2)\right]$  
  $\displaystyle +
B_2^{\mathbf s_1}
\left[
{\textstyle{\frac{1}{4}}}\boldsymbol\n...
... J_1(\mathbf r_2,\mathbf r_1)\cdot \mathsf J_1(\mathbf r_1,\mathbf r_2) \right.$  
  $\displaystyle \left.~~~~~~ - \mathbf s_1(\mathbf r_2,\mathbf r_1)\cdot \mathbf T_1(\mathbf r_1,\mathbf r_2)
\right]
\biggr\},$ (83)

whereas the corresponding quasilocal Cartesian EDF reads,
$\displaystyle \langle V_2\rangle={\textstyle{\frac{1}{4}}}\,t_2
\int\!\mathrm d\mathbf r
\biggl\{$ $\textstyle \left[{\textstyle{\frac{5}{4}}}(1-z_2)+x_2-y_2\right]
\left[ \rho_0\tau_0+{\textstyle{\frac{1}{4}}}\,\rho_0\Delta\rho_0-\mathbf j_0^2 \right]$    
  $\textstyle +
\left[{\textstyle{\frac{1}{4}}}(1-z_2)+{\textstyle{\frac{1}{2}}}(x...
...rho_1\tau_1+{\textstyle{\frac{1}{4}}}\,\rho_1\Delta\rho_1-\mathbf j_1^2 \right]$    
  $\textstyle +
\left[{\textstyle{\frac{1}{4}}}(1-z_2)+{\textstyle{\frac{1}{2}}}(x...
...extstyle{\frac{1}{4}}}\,\mathbf s_0\cdot\Delta\mathbf s_0-\mathbf J_0^2 \right]$    
  $\textstyle +
{\textstyle{\frac{1}{4}}}(1-z_2)
\left[ \mathbf s_1\cdot\mathbf T_...
...frac{1}{4}}}\,\mathbf s_1\cdot\Delta\mathbf s_1-\mathbf J_1^2 \right]
\biggr\}.$   (84)

The second-order Cartesian EDF (79-80) and (83-84) is exactly equivalent to that in the spherical-tensor representation. The corresponding relations of conversions between the parameters of the second-order regularized pseudopotential (3) and those of its Cartesian form (38) read

$\displaystyle C_{00,00}^{20,0}$ $\textstyle =$ $\displaystyle \sqrt{3}t_1+ \frac{\sqrt{3}}{2}t_1x_1,$ (85)
$\displaystyle C_{00,00}^{20,1}$ $\textstyle =$ $\displaystyle -\sqrt{3}t_1y_1- \frac{\sqrt{3}}{2}t_1z_1 ,$ (86)
$\displaystyle C_{00,20}^{20,0}$ $\textstyle =$ $\displaystyle -\frac{3}{2} t_1x_1 ,$ (87)
$\displaystyle C_{00,20}^{20,1}$ $\textstyle =$ $\displaystyle \frac{3}{2} t_1z_1,$ (88)
$\displaystyle C_{11,00}^{11,0}$ $\textstyle =$ $\displaystyle \sqrt{3}t_2+ \frac{\sqrt{3}}{2}t_2x_2 ,$ (89)
$\displaystyle C_{11,00}^{11,1}$ $\textstyle =$ $\displaystyle -\sqrt{3}t_2y_2- \frac{\sqrt{3}}{2}t_2z_2,$ (90)
$\displaystyle C_{11,20}^{11,0}$ $\textstyle =$ $\displaystyle -\frac{3}{2} t_2x_2 ,$ (91)
$\displaystyle C_{11,20}^{11,1}$ $\textstyle =$ $\displaystyle \frac{3}{2} t_2z_2.$ (92)

Jacek Dobaczewski 2014-12-07