The extent to which the rain rate from shallow, liquid-phase clouds is microphysically influenced by aerosol, and therefore drop concentration Nd perturbations, is addressed through analysis of the precipitation susceptibility, So. Previously published work, based on both models and observations, disagrees on the qualitative behavior of So with respect to variables such as liquid water path L or the ratio between accretion and autoconversion rates. Two primary responses have emerged: (i) So decreases monotonically with increasing L and (ii) So increases with L, reaches a maximum, and decreases thereafter. Here we use a variety of modeling frameworks ranging from box models of (size-resolved) collision-coalescence, to trajectory ensembles based on large eddy simulation to explore the role of time available for collision-coalescence tc in determining the So response. The analysis shows that an increase in tc shifts the balance of rain production from autoconversion (a Nd-dependent process) to accretion (roughly independent of Nd), all else (e.g., L) equal. Thus, with increasing cloud contact time, warm rain production becomes progressively less sensitive to aerosol, all else equal. When the time available for collision-coalescence is a limiting factor, So increases with increasing L whereas when there is ample time available, So decreases with increasing L. The analysis therefore explains the differences between extant studies in terms of an important precipitation-controlling parameter, namely the integrated liquid water history over the course of an air parcel’s contact with a cloud.
room 17, Pasteura 7 at 13:15

dr hab. inż. Jacek W. Kamiński (Fundacja EkoPrognoza)
Applcation of satellite observation for air quality modelling and assessments. Collaboration with the European Space Agency
Member, Mission Advisory Group for Sentinel 4 and Sentinel 5 satellite instruments
Adjunct Professor, Faculty of Graduate Studies, Centre for Research in Earth and Space Science,
York University, Toronto, Canada
Tematyka seminarium dotyczy znaczenia obserwacji satelitarnych dla zrozumienia dynamiki i chemii atmosfery ziemskiej, ze szczególnym uwzględnieniem planowanych misji Sentinel 4 i Sentinel 5, proponowanych przez Europejską Agencją Kosmiczną.
Omówione zostaną metody modelowania i asymilacji danych, które pozwalają w optymalny sposób zrekonstruować stan atmosfery, poprzez połączenie różnych typów obserwacji z informacją dostarczoną przez deterministyczny system modelowania. W odniesieniu do misji Sentinel 4 i Sentinel 5 zostaną przedstawione możliwe zastosowania modelu „pogody chemicznej” w celu zaprojektowania instrumentów pomiarowych.
W oparciu o doświadczenia z poprzednich misji (PREMIER, SCIA, ACE) zarysowane zostaną możliwości podejmowania projektów badawczych w dziedzinie nauk atmosferycznych, związanych z Sentinel 4 i Sentinel 5 z we współpracy z Europejską Agencją Kosmiczną.
The overall objective of this presentation is to discuss contributions of satellite observations to the understanding of dynamics and chemistry Earth’s atmosphere with particular emphasis on future air quality missions – Sentinel 4 and Sentinel 5 proposed by ESA.
Forward modelling and data assimilation methods that allow us to optimally reconstruct a best estimate of the atmospheric state by combining various types of observations with information provided by a deterministic modelling system will be presented. Application of a chemical weather model to carry simulations for Sentinel 4 and Sentinel 5 satellite for instrument design and assessment will be discussed.
Also, opportunities for future collaborative projects in the scope of ESA will be presented. room 17, Pasteura 7 at 13:15

prof. dr hab. W Grabowski, profesor afiliowany UW (National Center for Atmospheric Research, Boulder, Colorado)
In atmospheric applications, traditional anelastic models apply environmental hydrostatically-balanced pressure profile when formulating moist thermodynamics, and model-derived pressure perturbations are neglected. Such an approach is supported by simple scaling arguments. However, when used in simulations of larger-scale flows (mesoscale, synoptic, etc.), similar arguments show that at least the hydrostatically-balanced component of the pressure perturbation needs to be included. Following this line of thought, we are conducting systematic investigations of various moist atmospheric flows and compare numerical solutions obtained with a fully-compressible acoustic-mode-resolving model and with two versions of the anelastic model, either including or excluding anelastic pressure perturbations in moist thermodynamics. The two versions of the anelastic model are referred to as the generalized and standard anelastic, respectively. So far, numerical solutions for moist thermals rising from rest, mesoscale orographic wave flows, and super-cell simulations were compared. In agreement with the scaling arguments, only negligible differences between anelastic and compressible solutions were simulated. Incorporation of the anelastic pressure perturbations into moist thermodynamics paves the way for ongoing studies where larger-scale moist dynamics are considered.
room 17, Pasteura 7 at 13:15

Ewan O'Connor (University of Reading, UK, and FMI, Finland)
Active remote sensing has the capability for providing profiles of atmospheric properties with high accuracy at extremely good temporal and spatial resolution. This presentation will explain the principles of various radar and lidar sytems, together with the atmospheric properties that can be obtained. Depending on how advanced the system is, properties can range from simple cloud and aerosol layer detection, to microphysical properties (such as size, and phase or composition). Doppler velocity information (possible from both radar and lidar) and/or mulitple wavelengths provide extra information. It is also possible to measure temperature, humidity, wind and turbulence, and examples of each of these will be included.
There will also be an introduction to European projects such as EARLINET (European Aerosol Research Lidar Network) using advanced multi-wavelength lidar systems to establish an aerosol climatology, and Cloudnet, which compared radar and lidar observations at several sites in Europe with the representation of clouds over these sites in a number of operational forecast models (these programmes have now been incorporated into the EU FP7 project ACTRIS - Aerosol Clouds and Trace gases InfraStructure network).
room 17, Pasteura 7 at 13:15

prof dr hab. Szymon P. Malinowski (IGF FUW)
Resarch project "Cloud Microdynamics"
Seminarium będzie poświęcone nowemu projektowi badawczemu, finansowanemu przez Narodowe Centrum Nauki, realizowanemu w ZFA IGF UW pod moim kierownictwem. Opowiem skąd wzięła się nazwa projektu, przedstawię zarys stanu wiedzy w dziedzinie, zadania i prace planowane w ramach projektu. Postaram się Państwa przekonać, że lepsze zrozumienie wzajemnych oddziaływań turbulencji, procesów termodynamicznych i mikrofizycznych w chmurach w skalach od centymetrów do metrów może pomoc nam w opisie pogody i klimatu.
Available only in Polish. room 17, Pasteura 7 at 13:15

(IGF UW)
dr Iwona Stachlewska i dr hab. Krzysztof Markowicz
W piątek 4 października, w ramach Środowiskowego Seminarium Fizyki Atmosfery, zapoznamy Państwa się z naszym nowym
wieloczęstotliwościowym depolaryzacyjnym lidarem Polly XT.
Oglądanie/zapoznawanie się z lidarem, który znajduje się na trawniku przed budynkiem na ul Pasteura 7, będzie odbywało się w grupach 10-cio osobowych, w terminach:
* I grupa: 13.15-13.45
* II grupa: 13.45-14.15
Ze względów organizacyjnych uprzejmie proszę o zgłaszanie w której grupie chcieliby Państwo zwiedzać lidar.
Zgłoszenia proszę przesyłać na adres mnurek@igf.fuw.edu.pl do czwartku, 3 października.
Spotkanie poszczególnych grup w sali 17 na Pasteura7.
Przewodnikami będą: dr Iwona Stachlewska i dr hab. Krzysztof Markowicz.
W przypadku intensywnego opadu oglądanie zostanie odwołane e-mailem w godzinach porannych.