Neutrina atmosferyczne są produkowane dzięki procesowi zderzeń cząstek promieniowania kosmicznego, z atomami górnych warstw atmosfery. W wyniku zderzeń powstaje ogromna liczba nietrwałych cząstek zwanych pionami. Pion rozpada się w czasie podróży przez atmosferę na mion oraz neutrino mionowe (nie będziemy na niniejszej stronie rozróżniać cząstek i antycząstek, gdyż detektory mierzące neutrina atmosferyczne, również tego nie potrafią, mówiąc neutrino mamy więc na myśli zarówno neutrino, jak i odpowiadające mu anty-neutrino). Mion rozpada się zaś na elektron, neutrino elektronowe i neutrino mionowe. Bazując na tej prostej przemianie można oszacować stosunek ilości neutrin mionowych do ilości neutrin elektronowych, które docierają do powierzchni Ziemi. Powinien on wynosić 2 do 1, czyli detektory neutrin atmosferycznych powinny rejestrować dwa razy więcej neutrin mionowych od elektronowych. Oczywiście, jak zawsze w fizyce, należy brać pod uwagę liczne dodatkowe poprawki i wprowadzić kilka korekt do owego stosunku. Poprawki te są znane i obliczane przez naukowców. Ostateczne oszacowanie stosunku strumieni neutrin obu gatunków docierających do powierzchni Ziemi jest wyznaczone z dokładnością kilku procent.
W 1998 roku eksperyment SuperKamiokande (o którym szerzej możesz przeczytać w części poświęconej dzisiejszym eksperymentom neutrinowym) opublikował pierwszy wynik pomiaru ilości neutrin atmosferycznych obu rodzajów. Naukowcy otrzymali stosunek neutrin mionowych do neutrin elektronowych o czynnik 1,6 mniejszy niż przewidywany!
Drugim wynikiem grupy SuperKamiokande był pomiar asymetrii w ilości neutrin docierających do detektora z dołu i z góry. Promieniowanie kosmiczne dociera do powierzchni Ziemi izotropowo tzn. tak samo z każdego kierunku. Oczywiście ziemskie pole magnetyczne wpływa na rozchodzenie się promieniowanie i zaburza ową symetrię. Jednak jeśli weźmiemy pod uwagę jedynie bardzo szybkie cząstki promieniowania to pole magnetyczne Ziemi będzie miało na nie znikomy wpływ. W eksperymencie skupiono się więc na badaniu bardzo szybkich neutrin, które produkowane były przez bardzo szybkie cząstki promieni kosmicznych. Jeśli promieniowanie kosmiczne dociera do atmosfery w sposób izotropowy to do detektora neutrina powinny docierać również izotropowo (trzeba tu uwzględnić jeszcze poprawkę na grubość atmosfery ziemskiej, która w różnych kierunkach od detektora jest inna, niemniej stwierdzenie, że z kierunku zenitu powinno do detektora docierać dokładnie tyle neutrin co z kierunku nadiru, pozostaje w mocy). Rysunek poniżej przedstawia przewidywania i wyniki pomiaru. Na lewym wykresie, który obrazuje pomiar neutrin elektronowych, wyniki eksperymentu w doskonały sposób zgadzają się z przewidywaniami. Prawy wykres przedstawia natomiast sytuację dla neutrin mionowych. Wynika z niego jasno, że ilość neutrin docierających do detektora "z dołu" jest znacząco mniejsze od przewidywanej. Ilość neutrin docierających "z góry" pozostaje natomiast zgodna z ilością teoretyczną.
Jaki wniosek płynie z wyników eksperymentu SuperKamiokande? Gdzieś pomiędzy punktem powstania, a detektorem część neutrin mionowych znika. Przy czym znikanie to jest zależne od drogi, którą neutrina przebywają. Dla neutrin, które przybywają z góry, przechodząc jedynie przez obszar atmosfery (średnia przebyta przez nie droga wynosi około kilkunastu kilometrów) znikania neutrin nie zanotowano. Dla neutrin, które rodzą się w atmosferze po drugiej stronie globu, a następnie przenikają całą Ziemię (około 10 000 kilometrów) zanim dotrą do detektora, efekt jest znaczący.
Eksperyment SuperKamiokande był pierwszym eksperymentem, który opublikował wyniki "znikania" mionowych neutrin atmosferycznych. Wkrótce odkrycie zostało potwierdzone przez detektor Soudan II znajdujący się w kopalni w Minesocie w Stanach Zjednoczonych. Detektor ten również zarejestrował niedobór atmosferycznych neutrin mionowych dochodzących do niego z kierunku nadiru.
Jak wytłumaczyć wyniki eksperymentów SuperKamiokande i Soudan II? Co się dzieje ze znikającymi neutrinami? Czy problem ten da się powiązać z brakującymi neutrinami słonecznymi?
Okazuje się, że znikanie neutrin atmosferycznych i niedobór neutrin słonecznych są dowodami na niezerową masę owych cząstek, o czym powiemy na następnej stronie.