next up previous
Next: Variation after particle-number projection Up: The HFB method Previous: The HFB equations

The Skyrme HFB method

For the zero-range Skyrme forces, the HFB formalism can be written directly in the coordinate representation [30,31,32] by introducing particle and pairing densities

$\displaystyle \rho ({\bm r}\sigma ,{\bm r^{\prime }}\sigma^{\prime })$ $\displaystyle =$ $\displaystyle \tfrac{1}{2} \rho ({\bm r},{\bm r}^{\prime })\delta_{\sigma
\sigma^{\prime }}$  
  $\displaystyle +$ $\displaystyle \tfrac{1}{2} \sum_{i}(\sigma
\vert\sigma_{i}\vert\sigma^{\prime })\rho_{i}({\bm r},{\bm r}
^{\prime }) ,$ (13)
$\displaystyle \tilde{\rho}({\bm r}\sigma ,{\bm r^{\prime }}\sigma^{\prime })$ $\displaystyle =$ $\displaystyle \tfrac{1}{2 } \tilde{\rho}({\bm r},{\bm r}^{\prime })\delta
_{\sigma \sigma^{\prime }}$  
  $\displaystyle +$ $\displaystyle \tfrac{1}{2}
\sum_{i}(\sigma \vert\sigma_{i}\vert\sigma^{\prime })\tilde{\rho}_{i}( {\bm
r},{\bm r}^{\prime }),$ (14)

which explicitly depend on spin. The use of the pairing density $ \tilde{\rho}$,

$\displaystyle \tilde{\rho}({\bm r}\sigma ,{\bm r^{\prime }}\sigma^{\prime })=-2\sigma^{\prime }\kappa ({\bm r,}\sigma ,{\bm r^{\prime },}-\sigma^{\prime }),$ (15)

instead of the pairing tensor $ \kappa $ is convenient when restricting to time-even quasiparticle states where both $ \rho $ and $ \tilde{\rho}$ are hermitian and time-even [31].

The densities $ \rho $ and $ \tilde\rho$ can be expressed in the single-particle basis:

$\displaystyle \rho ({\bm r}\sigma ,{\bm r^{\prime }}\sigma^{\prime })$ $\displaystyle =$ $\displaystyle \sum_{nn^{\prime }}\rho_{nn^{\prime }}~\psi_{n^{\prime }}^{\ast
}({\bm r^{\prime }},\sigma
^{\prime })\psi_{n}({\bm r},\sigma ),$ (16)
$\displaystyle \tilde{\rho}({\bm r}\sigma ,{\bm r^{\prime }}\sigma^{\prime })$ $\displaystyle =$ $\displaystyle \sum_{nn^{\prime }}\tilde{\rho}_{nn^{\prime }}~\psi_{n^{\prime
}}^{\ast }({\bm r^{\prime }},\sigma^{\prime })\psi_{n}({\bm
r},\sigma ),$ (17)

where $ \rho_{n^{\prime }n}$ and $ \tilde\rho_{n^{\prime }n}$ are the corresponding density matrices. In this study, we take $ {\psi_{n}({\bm r},\sigma )}$ as a set of the HO wave functions.

The building blocks of the Skyrme HFB method are the local densities, namely the particle density $ \rho ({\bm r})$, kinetic energy density $ \tau ({\bm r})$, and spin-current density $ {\mathsf
J}_{ij}({\bm r})$:

\begin{displaymath}\begin{array}{ccl} \rho ({\bm r}) & = & \rho ({\bm r},{\bm r}...
...prime })\right\vert _{{\bm r}^{\prime }={\bm r}}\;, \end{array}\end{displaymath} (18)

as well as the corresponding pairing densities $ \tilde{\rho}({\bm r})$, $ \tilde{\tau}({\bm r})$ and $ \tilde{\mathsf J}_{ij}({\bm r})$.

In the coordinate representation, the Skyrme HFB energy (8) can be written as a functional of the local particle and pairing densities:

$\displaystyle E[\rho,\tilde{\rho}]=\frac{\langle \Phi \vert H\vert\Phi \rangle }{\langle \Phi \vert\Phi \rangle } =\int d{\bm r}~{\cal H}({\bm r}).$ (19)

The energy density $ {\cal
H}({\bm r})$ is a sum of the particle $ H({\bm r})$ and pairing energy density $ \tilde{H}({\bm r})$:

$\displaystyle {\cal H}({\bm r})=H({\bm r})+\tilde{H}({\bm r}).$ (20)

The derivatives of $ E[\rho ,\tilde{\rho}]$ with respect to density matrices $ \rho $ and $ \tilde{\rho}$ define the self-consistent particle ($ h$) and pairing ($ \tilde{h}$) fields, respectively. The explicit expressions for $ H({\bm r})$, $ \tilde{H}({\bm r})$, $ h({\bm r},\sigma ,\sigma^{\prime })$, and $ \tilde{h}({\bm r} ,\sigma ,\sigma^{\prime })$ have been given in Ref. [31] and will not be repeated here.

The Skyrme HFB equations can be written in the matrix form as:

$\displaystyle \left( \begin{array}{cc} h-\lambda & \tilde{h} \\ \tilde{h} & -h+...
...E_k \left( \begin{array}{c} \varphi_{1,k} \\ \varphi_{2,k} \end{array} \right),$ (21)

where
$\displaystyle h_{nn^{\prime }}$ $\displaystyle =$ $\displaystyle \frac{\partial E[\rho ,\tilde{\rho}]}{\partial
\rho
_{n^{\prime }n}}$  
  $\displaystyle =$ $\displaystyle \sum_{\sigma \sigma^{\prime }}\int d{\bm r}~\psi_{n}^{\ast }({\bm...
...{\bm r},\sigma ,\sigma^{\prime })\psi_{n^{\prime
}}({\bm r} ,\sigma^{\prime }),$ (22)

and
$\displaystyle \tilde{h}_{nn^{\prime }}$ $\displaystyle =$ $\displaystyle \frac{\partial E[\rho ,\tilde{\rho}]}{\partial
\tilde{\rho}_{n^{\prime }n}}$  
  $\displaystyle =$ $\displaystyle \sum_{\sigma \sigma^{\prime }}\int d{\bm r}~\psi_{n}^{\ast }( {\b...
...{\bm r},\sigma ,\sigma
^{\prime })\psi_{n^{\prime}}({\bm r} ,\sigma^{\prime }),$ (23)

and $ \varphi_{1,k}$ and $ \varphi_{2,k}$ are the upper and lower components, respectively, of the quasiparticle wave function corresponding to the positive quasiparticle energy $ E_k$. After solving the HFB equations (21), one obtains the density matrices,
$\displaystyle \rho_{nn^{\prime }} = \sum_{E_k>0} \varphi_{2,nk} \varphi^*_{2,n^{\prime }k} ,$     (24)
$\displaystyle \tilde{\rho}_{nn^{\prime }} = -\sum_{E_k>0} \varphi_{2,nk} \varphi^*_{1,n^{\prime }k} ,$     (25)

which define the spatial densities (16) and (17) .

We note in passing that the derivation of the coordinate-space HFB equations [31] is strictly valid only when the time-reversal symmetry is assumed. When the time-reversal symmetry is broken, one has to introduce additional real vector particle densities $ {\bm s}$, $ {\bm j}$, $ {\bm T}$ [33], while the pairing densities acquire imaginary parts; see Ref. [32] for complete derivations.


next up previous
Next: Variation after particle-number projection Up: The HFB method Previous: The HFB equations
Jacek Dobaczewski 2006-10-13