next up previous
Next: The HFB equations Up: Variation after Particle-Number Projection Previous: Introduction


The HFB method

The many-body Hamiltonian of a system of fermions is usually expressed in terms of a set of annihilation and creation operators $ (c,c^{\dagger })$:

$\displaystyle H$ $\displaystyle =$ $\displaystyle \sum_{nn'}e_{nn'}~c_{n}^{\dagger }c_{n'}$  
  $\displaystyle +$ $\displaystyle \tfrac{1}{4}\sum_{nn'mm'}V_{nn'mm'}~c_{n}^{\dagger }c_{n'}^{\dagger
}c_{m'}c_{m},$ (1)

where

$\displaystyle V_{nn'mm'}=\langle nn'\vert V\vert mm'-m'm\rangle$ (2)

are the anti-symmetrized two-body interaction matrix-elements.

In the HFB method, the ground-state wave function is the quasiparticle vacuum $ \vert\Phi \rangle ,$ defined as $ \alpha
_{k}\vert\Phi \rangle =0$, where the quasiparticle operators $ (\alpha
,\alpha^{\dagger })$ are connected to the original particle operators via the Bogoliubov transformation

$\displaystyle \quad \quad \alpha_{k}$ $\displaystyle =$ $\displaystyle \sum_{n}\left( U_{nk}^{\ast
}c_{n}+V_{nk}^{\ast
}c_{n}^{\dagger }\right) ,$ (3)
$\displaystyle \quad \quad \alpha_{k}^{\dagger }$ $\displaystyle =$ $\displaystyle \sum_{n}\left(
V_{nk}c_{n}+U_{nk}c_{n}^{\dagger }\right),$ (4)

where the matrices $ U$ and $ V$ satisfy the unitarity and completeness relations:
$\displaystyle U^{\dagger }U+V^{\dagger }V=I,$   $\displaystyle UU^{\dagger
}+V^{\ast }V^{T}=I,$ (5)
$\displaystyle U^{T}V+V^{T}U=0,$   $\displaystyle UV^{\dagger }+V^{\ast }U^{T}=0.$ (6)



Subsections
next up previous
Next: The HFB equations Up: Variation after Particle-Number Projection Previous: Introduction
Jacek Dobaczewski 2006-10-13