next up previous
Next: The Skyrme HFB method Up: The HFB method Previous: The HFB method

The HFB equations

In terms of the density matrix $ \rho $ and pairing tensor $ \kappa $, defined as

$\displaystyle \rho =V^{\ast }V^{T},\quad \kappa =V^{\ast }U^{T}=-UV^{\dagger },$ (7)

the HFB energy is expressed as an energy functional:
$\displaystyle E[\rho ,\kappa ]$ $\displaystyle =$ $\displaystyle \frac{\langle \Phi \vert H\vert\Phi \rangle }{\langle
\Phi
\vert\Phi \rangle }$  
  $\displaystyle =$ $\displaystyle {\rm Tr}\left[ \left(e+\tfrac{1}{2}\Gamma \right)\rho \right]
-\tfrac{1}{2}{\rm Tr} \left[ \Delta \kappa^{\ast }\right] ,$ (8)

where
$\displaystyle \Gamma_{nm}$ $\displaystyle =$ $\displaystyle \sum_{n'm'}V_{nn'mm'}
\rho_{m'n'},$ (9)
$\displaystyle \Delta_{nn'}$ $\displaystyle =$ $\displaystyle \tfrac{1}{2}\sum_{mm'}V
_{nn'mm'}\kappa_{mm'}.$ (10)

The variation of the HFB energy (8) with respect to $ \rho $ and $ \kappa $ yields the HFB equations:

$\displaystyle {\cal H}\left( \begin{array}{c} U_k \\ V_k \end{array} \right) =E_k\left( \begin{array}{c} U_k \\ V_k \end{array} \right) ,$ (11)

where

$\displaystyle {\cal H}=\left( \begin{array}{cc} e+\Gamma -\lambda & \Delta \\ -\Delta^{\ast } & -(e+\Gamma )^{\ast }+\lambda \end{array} \right) ,$ (12)

$ U_k$ and $ V_k$ are the $ k$th columns of matrices $ U$ and $ V$, respectively, and $ E_k$ is a positive quasiparticle energy eigenvalue. Since the HFB state $ \vert\Phi\rangle$ violates the particle-number symmetry, the Fermi energy $ \lambda $ is introduced to fix the average particle number.


next up previous
Next: The Skyrme HFB method Up: The HFB method Previous: The HFB method
Jacek Dobaczewski 2006-10-13