next up previous
Next: Signature or simplex Up: Single-particle bases for conserved Previous: Time-reversal

   
T-signature or T-simplex

As is well known[17,6], for each of the six antilinear D $_{\mbox{\rm\scriptsize {2h}}}^{\mbox{\rm\scriptsize {TD}}}$ operators, i.e., for T-signature $\hat{\cal{R}}_{k}^T$ or T-simplex $\hat{\cal{S}}_{k}^T$, k=x,y,z, which have squares equal to unity, ( $\hat{\cal{Z}}^2$= $\hat{\cal{E}}$, where $\hat{\cal{Z}}$ denotes one of them), one can construct a basis composed of eigenvectors of $\hat{\cal{Z}}$ with eigenvalue equal to 1,

 \begin{displaymath}
\hat{\cal{Z}}\vert\mbox{{\boldmath {$n$ }}}\,\zeta\rangle = \vert\mbox{{\boldmath {$n$ }}}\,\zeta\rangle.
\end{displaymath} (14)

Moreover, since every operator $\hat{\cal{Z}}$ commutes with the time-reversal $\hat{\cal{T}}$, such basis can always be chosen so as to fulfill condition (9) at the same time. Table 3 lists examples of such bases, constructed for the HO states |nxnynz,sz= $\pm\frac{1}{2}\rangle$. A similar construction is possible for any other single-particle basis, and has the explicit form shown in Table 3 provided the space and spin degrees of freedom are separated. Note that any linear combination of states $\vert\mbox{{\boldmath {$n$ }}}\,\zeta$=$+1\rangle$and $\vert\mbox{{\boldmath {$n$ }}}\,\zeta$=$-1\rangle$, with real coefficients, is another valid eigenstate of $\hat{\cal{Z}}$ with eigenvalue 1.

For operators even or odd with respect to $\hat{\cal{Z}}$,

 \begin{displaymath}
\hat{\cal{Z}}^\dagger\hat{\cal{O}}\hat{\cal{Z}}= \epsilon_Z\hat{\cal{O}}, \qquad \epsilon_Z=\pm1,
\end{displaymath} (15)

one then has

 \begin{displaymath}
\langle \mbox{{\boldmath {$n$ }}}\,\zeta\vert\hat{\cal{O}}\...
...\hat{\cal{O}}\vert\mbox{{\boldmath {$n$ }}}'\,\zeta'\rangle^*.
\end{displaymath} (16)

Hence, in bases fulfilling Eqs. (9) and (14), matrix ${\cal{O}}$ is purely real ( $\epsilon_Z$=+1) or purely imaginary ( $\epsilon_Z$=-1). This gives matrix ${\cal{O}}$ in the form (tilde stands for the transposition)

 \begin{displaymath}
\left(\begin{array}{cc}
A & Y \\
\widetilde{Y} & B
\end...
...{cc}
A' & Y' \\
-\widetilde{Y}' & -B'
\end{array} \right),
\end{displaymath} (17)

for $\epsilon_Z$=+1 and $\epsilon_Z$=-1, respectively, where all submatrices are real, A and B are symmetric, A' and B' are antisymmetric, and Y and Y' are arbitrary. Note that in order to diagonalize ${\cal{O}}$one only needs to diagonalize a real matrix with unrestricted eigenvalues (for $\epsilon_Z$=+1), or an imaginary matrix with pairs of opposite non-zero eigenvalues (for $\epsilon_Z$=-1).


 
Table 3: Examples of eigenstates $\vert n_xn_yn_z\,\zeta\rangle_k^T$ of the T-signature, $\hat{\cal{R}}_{k}^T$, or T-simplex, $\hat{\cal{S}}_{k}^T$ operators, k=x, y, or z, with eigenvalue 1 [cf. Eqs. (9) and (14)], determined for the harmonic oscillator states |nxnynz,sz= $\pm\frac{1}{2}\rangle$. Symbols (Nx,Ny,Nz) refer to (nx,ny,nz) for $\hat{\cal{S}}_{k}^T$operators, and to (ny+nz,nx+nz,nx+ny) for $\hat{\cal{R}}_{k}^T$ operators.
k $\zeta$ $\vert n_xn_yn_z\,\zeta\rangle_k^T$    
x +1 $(+i)^{N_x}\exp(-i\frac{\pi}{4})\,
\vert n_xn_yn_z,s_z$= $+\frac{1}{2}\rangle$    
x -1 $(-i)^{N_x}\exp(+i\frac{\pi}{4})\,
\vert n_xn_yn_z,s_z$= $-\frac{1}{2}\rangle$    
y +1 $(+i)^{N_y+1}\,
\vert n_xn_yn_z,s_z$= $+\frac{1}{2}\rangle$    
y -1 $(-i)^{N_y+1}\,
\vert n_xn_yn_z,s_z$= $-\frac{1}{2}\rangle$    
z +1   $\frac{1}{\sqrt{2}}$( |nxnynz,sz= $\frac{1}{2}\rangle $+ i(-1)Nz |nxnynz,sz= $-\frac{1}{2}\rangle\,)$
z -1   $\frac{i(-1)^{N_z}}{\sqrt{2}}$( |nxnynz,sz= $\frac{1}{2}\rangle $- i(-1)Nz |nxnynz,sz= $-\frac{1}{2}\rangle\,)$


next up previous
Next: Signature or simplex Up: Single-particle bases for conserved Previous: Time-reversal
Jacek Dobaczewski
2000-02-05