next up previous
Next: T-signature or T-simplex Up: Single-particle bases for conserved Previous: Single-particle bases for conserved

   
Time-reversal

Let us first consider operators $\hat{\cal{O}}$ which are either even (invariant) or odd (antiinvariant) with respect to the time-reversal:

 \begin{displaymath}
\hat{\cal{T}}^\dagger\hat{\cal{O}}\hat{\cal{T}}= \epsilon_T \hat{\cal{O}}, \qquad \epsilon_T=\pm1.
\end{displaymath} (11)

From Eqs. (9) and (11) one gets

 \begin{displaymath}
\langle \mbox{{\boldmath {$n$ }}}\,\zeta\vert\hat{\cal{O}}\...
...t{\cal{O}}\vert\mbox{{\boldmath {$n$ }}}'\,-\!\zeta'\rangle^*.
\end{displaymath} (12)

It follows, that the matrix corresponding to $\hat{\cal{O}}$ reads

 \begin{displaymath}
{\cal{O}}= \left(\begin{array}{cc}
A & Y \\
-\epsilon_T Y^* & \epsilon_T A^*
\end{array} \right),
\end{displaymath} (13)

where A is hermitian, and Y is antisymmetric or symmetric for $\epsilon_T$=+1 and $\epsilon_T$=-1, respectively. No block-diagonal structure appears, nevertheless, only two instead of four submatrices, A and Y, complex in general, have to be calculated.



Jacek Dobaczewski
2000-02-05