Next: About this document ...
Up: Point symmetries in the
Previous: .
-
- 1
-
P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag,
Berlin, 1980).
- 2
-
M. Hamermesh, Group Theory (Addison-Wesley, Reading, Mass., 1962).
- 3
-
G.F. Koster, J.O. Dimmock, R.G. Wheeler and H. Statz,
Properties of the Thirty-Two Point Groups (M.I.T. Press, Cambridge,
Massachusetts, 1963).
- 4
-
L.D. Landau and E.M. Lifschitz, Quantum Mechanics (Non-relativistic
Theory) (Pergamon Press, 1981).
- 5
-
J.F. Cornwell, Group Theory in Physics (Academic Press, 1984).
- 6
-
Ch.W. Curtis, I. Rainer, Representation Theory of Finite Groups and
Associative Algebras (Interscience Publishers, New York, 1962).
- 7
-
C.J. Bradley, A.P. Cracknell,
The Mathematical Theory of Symmetry in Solids (Clarendon Press, Oxford,
1972).
- 8
-
E.P. Wigner, Group Theory and Its Application to the Quantum
Mechanics of Atomic Spectra (Academic Press, New York, 1959).
- 9
-
P. Bonche, H. Flocard, and P.-H. Heenen, Nucl. Phys. A467, 115-35
(1990).
- 10
-
J. Dobaczewski and J. Dudek, Comp. Phys. Commun. 102, 166 (1997); 102, 183 (1997).
- 11
-
J.W. Negele, Lecture Notes in Physics 40 (Springer, Berlin, 1975) pp.
285, 288.
- 12
-
R.M. Dreizler and E.K.U. Gross, Density Functional Theory (Springer,
Berlin, 1990).
- 13
-
P. Quentin and H. Flocard, Annu. Rev. Nucl. Part. Sci. 28, 523 (1978).
- 14
-
J. Dobaczewski, J. Dudek, S.G. Rohozinski, and T.R. Werner, the following
paper.
- 15
-
A. Messiah, Quantum Mechanics (Wiley, New York, 1962).
- 16
-
In this article, superscript Talways means that the corresponding operator contains factor ;
this should not be confused with the notation for the transposition
operation.
- 17
-
M. Girod and B. Grammaticos, Phys. Rev. C27, 2317 (1983).
- 18
-
The phase convention implied by Eq. (48) agrees
with that of Varshalowitch et al. [21], and thus it is
opposite to the one used by Bohr and Mottelson [24].
- 19
-
G. Ripka, Adv. Nucl. Phys. 1, 183 (1968).
- 20
-
Y.M. Engel, D.M. Brink, K. Goeke, S.J. Krieger, and D. Vautherin, Nucl. Phys.
A249, 215 (1975).
- 21
-
D.A Varshalovitch, A.N. Moskalev, and V.K. Kersonskii, Quantum Theory of
Angular Momentum (World Scientific, Singapore, 1988).
- 22
-
We adopt the general phase convention [21] valid for
arbitrary irreducible tensor operators. However, note that for
the integer-angular-momentum irreps, the signs of magnetic
components appearing in the phase
factors can be arbitrarily changed.
- 23
-
S. Frauendorf, to appear in Reviews of Modern Physics.
- 24
-
A. Bohr and B.R. Mottelson Nuclear Structure (Vol. I)
(W.A. Benjamin, Inc., 1969), p.19.
Jacek Dobaczewski
2000-02-05