next up previous
Next: About this document ... Up: Point symmetries in the Previous: .

Bibliography

1
P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, Berlin, 1980).

2
M. Hamermesh, Group Theory (Addison-Wesley, Reading, Mass., 1962).

3
G.F. Koster, J.O. Dimmock, R.G. Wheeler and H. Statz, Properties of the Thirty-Two Point Groups (M.I.T. Press, Cambridge, Massachusetts, 1963).

4
L.D. Landau and E.M. Lifschitz, Quantum Mechanics (Non-relativistic Theory) (Pergamon Press, 1981).

5
J.F. Cornwell, Group Theory in Physics (Academic Press, 1984).

6
Ch.W. Curtis, I. Rainer, Representation Theory of Finite Groups and Associative Algebras (Interscience Publishers, New York, 1962).

7
C.J. Bradley, A.P. Cracknell, The Mathematical Theory of Symmetry in Solids (Clarendon Press, Oxford, 1972).

8
E.P. Wigner, Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra (Academic Press, New York, 1959).

9
P. Bonche, H. Flocard, and P.-H. Heenen, Nucl. Phys. A467, 115-35 (1990).

10
J. Dobaczewski and J. Dudek, Comp. Phys. Commun. 102, 166 (1997); 102, 183 (1997).

11
J.W. Negele, Lecture Notes in Physics 40 (Springer, Berlin, 1975) pp. 285, 288.

12
R.M. Dreizler and E.K.U. Gross, Density Functional Theory (Springer, Berlin, 1990).

13
P. Quentin and H. Flocard, Annu. Rev. Nucl. Part. Sci. 28, 523 (1978).

14
J. Dobaczewski, J. Dudek, S.G. Rohozinski, and T.R. Werner, the following paper.

15
A. Messiah, Quantum Mechanics (Wiley, New York, 1962).

16
In this article, superscript Talways means that the corresponding operator contains factor $\hat{T}$; this should not be confused with the notation for the transposition operation.

17
M. Girod and B. Grammaticos, Phys. Rev. C27, 2317 (1983).

18
The phase convention implied by Eq. (48) agrees with that of Varshalowitch et al. [21], and thus it is opposite to the one used by Bohr and Mottelson [24].

19
G. Ripka, Adv. Nucl. Phys. 1, 183 (1968).

20
Y.M. Engel, D.M. Brink, K. Goeke, S.J. Krieger, and D. Vautherin, Nucl. Phys. A249, 215 (1975).

21
D.A Varshalovitch, A.N. Moskalev, and V.K. Kersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988).

22
We adopt the general phase convention [21] valid for arbitrary irreducible tensor operators. However, note that for the integer-angular-momentum irreps, the signs of magnetic components appearing in the phase factors can be arbitrarily changed.

23
S. Frauendorf, to appear in Reviews of Modern Physics.

24
A. Bohr and B.R. Mottelson Nuclear Structure (Vol. I) (W.A. Benjamin, Inc., 1969), p.19.



Jacek Dobaczewski
2000-02-05