next up previous
Next: Matrix elements of the Up: The NLO potentials, fields, Previous: Potentials in the spherical


Matrix elements of the Hamiltonian (60) in the spherical HO basis

In the spherical HO basis of Eq. (79), we can calculate the matrix elements of the single-particle Hamiltonian (60) in the following way:

    $\displaystyle \langle N'l'j'm'_j\vert\tilde{h}(\tilde{\rho}^{J''M''})\vert Nljm...
...IM_I'} \sum_{M'_L\mu'}
\int r^2{\rm d}\,r\int {\rm d}\Omega\sum_{\sigma'\sigma}$  
    $\displaystyle \sum_{M'}C^{J'M'}_{L'M'_Lv'\mu'}
{\textstyle{\frac{(-1)^{J'-M'}}{...
...'}
C^{L'M'_L}_{IM_II'M'_I} \langle\sigma'\vert\sigma_{v'\mu'}\vert\sigma\rangle$  
    $\displaystyle \phi^*_{N'l'j'm'_j}(r,\theta,\phi,\sigma')\,
D_{m'I'M'_I}\tilde{U...
...'M''}_{n'L'v'J',-M'}(\vec{r})D_{mIM_I}\,
\phi_{Nljm_j}(r,\theta,\phi,\sigma) ,$ (103)

where $\tilde{h}(\tilde{\rho}^{J''M''})$ denotes the field calculated for the one-multipole density matrix $\tilde{\rho}^{J''M''}$ (91). The integration by parts now gives
    $\displaystyle \langle N'l'j'm'_j\vert\tilde{h}(\tilde{\rho}^{J''M''})\vert Nljm...
...IM_I'} \sum_{M'_L\mu'}
\int r^2{\rm d}\,r\int {\rm d}\Omega\sum_{\sigma'\sigma}$  
    $\displaystyle \sum_{M'}C^{J'M'}_{L'M'_Lv'\mu'}
{\textstyle{\frac{(-1)^{J'-M'}}{...
...II'M'_I} \langle\sigma'\vert\sigma_{v'\mu'}\vert\sigma\rangle
(-1)^{m'+I'-M'_I}$  
    $\displaystyle \tilde{U}^{J''M''}_{n'L'v'J',-M'}(\vec{r})\,
\left(D_{m'I',-M'_I}...
...\sigma')\right)^*
\left(D_{mIM_I} \phi_{Nljm_j}(r,\theta,\phi,\sigma)\right) ,$  

where we have used the hermitian-conjugation property (32) of the differential operators.

By inserting potentials (104) and derivatives of spherical wavefunctions (83) we have:

    $\displaystyle \langle N'l'j'm'_j\vert\tilde{h}(\tilde{\rho}^{J''M''})\vert Nljm...
...IM_I'} \sum_{M'_L\mu'}
\int r^2{\rm d}\,r\int {\rm d}\Omega\sum_{\sigma'\sigma}$  
    $\displaystyle \sum_{M'}C^{J'M'}_{L'M'_Lv'\mu'}
{\textstyle{\frac{(-1)^{J'-M'}}{...
...II'M'_I} \langle\sigma'\vert\sigma_{v'\mu'}\vert\sigma\rangle
(-1)^{m'+I'-M'_I}$  
    $\displaystyle \times \sum_{TM_T} \tilde{U}_{n'L'v'J'}^{TJ''}(br) e^{-(br)^2}
C^{TM_T}_{J',-M'J''M''} Y_{TM_T}(\theta,\phi)$  
    $\displaystyle \times b^{m'+3/2}\sum_{k'm'_k}\sum_{m'_lm'_s} {\textstyle{\frac{1...
...}}
C^{k'm'_k}_{l'm'_lI',-M'_I}C^{j'm'_j}_{l'm'_l{\textstyle{\frac{1}{2}}}m'_s}$  
    $\displaystyle \times F^{k'*}_{m'I'N'l'}(br)e^{-{\textstyle{\frac{1}{2}}}(br)^2}Y^*_{k'm'_k}(\theta,\phi)\chi_{{\textstyle{\frac{1}{2}}}m'_s}(\sigma')$  
    $\displaystyle \times b^{m+3/2}\sum_{km_k}\sum_{m_lm_s} {\textstyle{\frac{1}{\sqrt{2k+1}}}}
C^{km_k}_{lm_lIM_I}C^{jm_j}_{lm_l{\textstyle{\frac{1}{2}}}m_s}$  
    $\displaystyle \times F^{k}_{mINl}(br)e^{-{\textstyle{\frac{1}{2}}}(br)^2}Y_{km_k}(\theta,\phi)\chi_{{\textstyle{\frac{1}{2}}}m_s}(\sigma)
,$ (104)

The angular part can be integrated explicitly, by using the multiplication law of spherical harmonics (Eq. 5.6(9) in Ref. [6]), and summations over $\sigma$ and $\sigma'$ can be performed as in Eqs. (94)-(96). This gives
    $\displaystyle \langle N'l'j'm'_j\vert\tilde{h}(\tilde{\rho}^{J''M''})\vert Nljm...
...=
\sum_{n'L'v'J'}\sum_{mIm'I'}\sum_{M_IM_I'} \sum_{M'_L\mu'}
\int r^2{\rm d}\,r$  
    $\displaystyle \sum_{M'}C^{J'M'}_{L'M'_Lv'\mu'}
{\textstyle{\frac{(-1)^{J'-M'}}{...
...{2J'+1}}}}(-1)^{m'}
K^{n'L'}_{mIm'I'}
C^{L'M'_L}_{IM_II'M'_I}
(-1)^{m'+I'-M'_I}$  
  $\textstyle \times$ $\displaystyle \sum_{TM_T} \sum_{k'm'_k}\sum_{m'_lm'_s} \sum_{km_k}\sum_{m_lm_s}...
...tstyle{\frac{(2T+1)(2k+1)}{4\pi(2k'+1)}}}} C^{k'0}_{T0k0} C^{k'm_k'}_{TM_Tkm_k}$  
  $\textstyle \times$ $\displaystyle b^{3+n'} F^{k'*}_{m'I'N'l'}(br) \tilde{U}_{n'L'v'J'}^{TJ''}(br)F^{k}_{mINl}(br) e^{-2(br)^2}$  
  $\textstyle \times$ $\displaystyle C^{TM_T}_{J',-M'J''M''}
{\textstyle{\frac{1}{\sqrt{2k'+1}}}}
C^{...
...sqrt{2k+1}}}}
C^{km_k}_{lm_lIM_I}C^{jm_j}_{lm_l{\textstyle{\frac{1}{2}}}m_s} ,$ (105)

where we have used condition (56).

We may now proceed by calculating the reduced matrix element of the field:

    $\displaystyle \langle\phi_{N'l'j'}\vert\vert\tilde{h}^{I''}(\tilde{\rho}^{J''M''})\vert\vert\phi_{Nlj}\rangle =$  
    $\displaystyle \sum_{m_jm'_jM''_I}\frac{1}{\sqrt{2j'+1}}
C^{j'm'_j}_{jm_jI''M''_I}
\langle N'l'j'm'_j\vert\tilde{h}(\tilde{\rho}^{J''M''})\vert Nljm_j\rangle .$ (106)

Again, after a lengthy but straightforward derivation presented in C, we obtain the following result:
    $\displaystyle \langle\phi_{N'l'j'}\vert\vert\tilde{h}^{I''}(\tilde{\rho}^{J''M''})\vert\vert\phi_{Nlj}\rangle =
\delta_{I''J''} (-1)^{J''}$  
  $\textstyle \times$ $\displaystyle \sum_{n'L'v'J'}\sum_{mIm'I'}
K^{n'L'}_{mIm'I'}
(-1)^{v'}\langle{\...
...c{1}{2}}}\rangle{\textstyle{\sqrt{\frac{1}{4\pi}}}}
\sum_{Tkk'} (-1)^{T} (2T+1)$  
  $\textstyle \times$ $\displaystyle \int r^2{\rm d}\,r e^{-2(br)^2}
b^{3+n'} F^{k'}_{m'I'N'l'}(br) \tilde{U}_{n'L'v'J'}^{TJ''}(br)F^{k}_{mINl}(br)$  
  $\textstyle \times$ $\displaystyle B^{ljkI,L'J''}_{l'j'k'I',v'TJ'} ,$ (107)

where we see the same numerical coefficients (100) that already appeared in Eq. (99).


next up previous
Next: Matrix elements of the Up: The NLO potentials, fields, Previous: Potentials in the spherical
Jacek Dobaczewski 2010-01-30