next up previous
Next: Bibliography Up: Solution of self-consistent equations Previous: Derivation of Eq. (98)


Derivation of Eq. (113)

After inserting Eq. (111) into Eq. (112) we must sum up products of four Clebsh-Gordan coefficients, similarly as in Eq. (129), that is,

    $\displaystyle \sum_{{m_jm_sm'_jm'_s}}
C^{{\textstyle{\frac{1}{2}}}m'_s}_{{\text...
...m_s}
C^{j'm'_j}_{jm_jI''M''_I}
C^{j'm'_j}_{l'm'_l{\textstyle{\frac{1}{2}}}m'_s}$  
  $\textstyle =$ $\displaystyle (-1)^{M''_I-m'_l-l-v'}
\sqrt{2}\sqrt{2j'+1}\sqrt{2j'+1}\sqrt{2j+1}$  
    $\displaystyle \times \sum_{T'M'_T}
C^{T'M'_T}_{l'm'_ll,-m_l}
C^{T'M'_T}_{v',-\m...
...}{2}}} & {\textstyle{\frac{1}{2}}} & v' \\
l & l' & T' \end{array}\right\} ,$ (130)

and then as in Eq. (131):
    $\displaystyle \sum_{m_lm'_lm_km'_k} (-1)^{-m'_l}
C^{km_k}_{lm_lIM_I}
C^{k'm'_k}_{l'm'_lI',-M'_I}
C^{T'M'_T}_{l'm'_ll,-m_l}
C^{k'm'_k}_{TM_Tkm_k}$  
  $\textstyle =$ $\displaystyle (-1)^{l+k+k'-I'}\sqrt{(2k+1)(2k'+1)(2k'+1)(2T'+1)}$  
    $\displaystyle \times
\sum_{W'M'_W}(-1)^{M'_W-M'_I}
C^{W'M'_W}_{T,-M_TT'M'_T}
C^...
...rray}{rrr} l & k & I \\
l' & k' & I' \\
T' & T & W' \end{array}\right\} .$ (131)

We can now perform the summation over $M'_I$ and $M_I$, which gives the factor $(-1)^{I+I'-L'}\delta_{L'W'}\delta_{M'_LM'_W}$ and allows for a summation over $W'$ and $M'_W$. After inserting all these results into Eq. (112), we obtain

$\displaystyle \langle\phi_{N'l'j'}\vert\vert\tilde{h}^{I''}(\tilde{\rho}^{J''M''})\vert\vert\phi_{Nlj}\rangle
\!\!\!\!$ $\textstyle =$ $\displaystyle \sum_{M''_I}
\sum_{n'L'v'J'}\sum_{mIm'I'} \sum_{M'_L\mu'}
\int r^2{\rm d}\,{r}$  
    $\displaystyle \sum_{M'}C^{J'M'}_{L'M'_Lv'\mu'}
{\textstyle{\frac{(-1)^{J'-M'}}{\sqrt{2J'+1}}}}(-1)^{m'}
K^{n'L'}_{mIm'I'}
(-1)^{m'+I'}$  
  $\textstyle \times$ $\displaystyle \sum_{TM_T} \sum_{k'} \sum_{k}
{\textstyle{\frac{1}{\sqrt{2}}}}
\...
...ac{1}{2}}}\rangle
\sqrt{{\textstyle{\frac{(2T+1)(2k+1)}{4\pi}}}} C^{k'0}_{T0k0}$  
  $\textstyle \times$ $\displaystyle b^{3+n'} F^{k'*}_{m'I'N'l'}(br) \tilde{U}_{n'L'v'J'}^{TJ''}(br)F^{k}_{mINl}(br) e^{-2(br)^2}$  
  $\textstyle \times$ $\displaystyle C^{TM_T}_{J',-M'J''M''}$  
  $\textstyle \times$ $\displaystyle (-1)^{M''_I-l-v'}
\sqrt{2}\sqrt{2j'+1}\sqrt{2j+1}$  
    $\displaystyle \times \sum_{T'M'_T}
C^{T'M'_T}_{v',-\mu' I''M''_I}
\left\{\begin...
...{1}{2}}} & {\textstyle{\frac{1}{2}}} & v' \\
l & l' & T' \end{array}\right\}$  
  $\textstyle \times$ $\displaystyle (-1)^{M'_L}(-1)^{l+k+k'-I'}\sqrt{(2T'+1)}$  
    $\displaystyle \times
C^{L'M'_L}_{T,-M_TT'M'_T}
\left\{\begin{array}{rrr} l & k & I \\
l' & k' & I' \\
T' & T & L' \end{array}\right\} (-1)^{I+I'-L'},$ (132)

Now, we have to sum up products of three Clebsh-Gordan coefficients, similarly as in Eq. (133), that is,
    $\displaystyle \sum_{M'_LM'_T\mu'} (-1)^{M'_L}
C^{J'M'}_{L'M'_Lv'\mu'}
C^{T'M'_T}_{v',-\mu' I''M''_I}
C^{L'M'_L}_{T,-M_TT'M'_T}$  
  $\textstyle =$ $\displaystyle {\textstyle{\sqrt{\frac{2T'+1}{2I''+1}}}}(-1)^{T'}{\textstyle{\sqrt{\frac{2L'+1}{2T+1}}}} (-1)^{L'+T'-T+M_T}$  
    $\displaystyle \times
(-1)^{T'+L'+I''+J'}\sqrt{2I''+1}\sqrt{2J'+1}
C^{T,-M_T}_{I...
...\left\{\begin{array}{rrr} v' & T' & I'' \\
T & J' & L' \end{array}\right\} .$ (133)

This gives:
    $\displaystyle \langle\phi_{N'l'j'}\vert\vert\tilde{h}^{I''}(\tilde{\rho}^{J''M''})\vert\vert\phi_{Nlj}\rangle$  
  $\textstyle =$ $\displaystyle \sum_{M''_I}
\sum_{n'L'v'J'}\sum_{mIm'I'}
\sum_{M'}
(-1)^{J'}
K^{n'L'}_{mIm'I'}
(-1)^{I'}$  
  $\textstyle \times$ $\displaystyle \sum_{TM_T} \sum_{k'} \sum_{k}
{\textstyle{\frac{1}{\sqrt{2}}}}
\...
...le{\frac{1}{2}}}\rangle
\sqrt{{\textstyle{\frac{(2k+1)}{4\pi}}}} C^{k'0}_{T0k0}$  
  $\textstyle \times$ $\displaystyle \int r^2{\rm d}\,{r}\,
b^{3+n'} F^{k'*}_{m'I'N'l'}(br) \tilde{U}_{n'L'v'J'}^{TJ''}(br)F^{k}_{mINl}(br) e^{-2(br)^2}$  
  $\textstyle \times$ $\displaystyle C^{TM_T}_{J',-M'J''M''} C^{T,-M_T}_{I'',-M''_IJ'M'}$  
  $\textstyle \times$ $\displaystyle (-1)^{I''+J'}(-1)^{T'} (-1)^{T}(-1)^{k+k'-I'-v'}(-1)^{I+I'-L'}$  
  $\textstyle \times$ $\displaystyle \sqrt{2}\sqrt{2j'+1}\sqrt{2j+1}\sqrt{(2T'+1)}\sqrt{(2L'+1)(2T'+1)}$  
  $\textstyle \times$ $\displaystyle \sum_{T'}
\left\{\begin{array}{rrr} j & j' & I'' \\
{\textstyl...
...\left\{\begin{array}{rrr} v' & T' & I'' \\
T & J' & L' \end{array}\right\} .$ (134)

Finally, summations over $M'$ and $M_T$ give the factor $\delta_{I''J''}\delta_{M''_IM''}$, that is:
    $\displaystyle \langle\phi_{N'l'j'}\vert\vert\tilde{h}^{I''}(\tilde{\rho}^{J''M''})\vert\vert\phi_{Nlj}\rangle$  
    $\displaystyle = \delta_{I''J''} (-1)^{J''}
\sum_{n'L'v'J'}\sum_{mIm'I'}
K^{n'L'...
...'}\vert\vert{\textstyle{\frac{1}{2}}}\rangle{\textstyle{\sqrt{\frac{1}{4\pi}}}}$  
    $\displaystyle \times \sum_{Tkk'} (-1)^{T} (2T+1) \int r^2{\rm d}\,{r}\,
b^{3+n...
...k'}_{m'I'N'l'}(br) \tilde{U}_{n'L'v'J'}^{TJ''}(br)F^{k}_{mINl}(br) e^{-2(br)^2}$  
    $\displaystyle \times
(-1)^{k} (-1)^{T}(-1)^{I-L'}
C^{T0}_{k0k'0}{\textstyle{\sqrt{\frac{(2k+1)(2k'+1)(2L'+1)(2j+1)(2j'+1)}{(2T+1)}}}}$  
    $\displaystyle \times \sum_{T'} (-1)^{T'}(2T'+1)
\left\{\begin{array}{rrr} j & j...
...\left\{\begin{array}{rrr} v' & T' & J'' \\
T & J' & L' \end{array}\right\} ,$ (135)

where we have also used Eq. (90). This shows explicitly that in the field calculated for the density matrix with multipolarity $J''$, only the multipole $J''$ appears.


References


next up previous
Next: Bibliography Up: Solution of self-consistent equations Previous: Derivation of Eq. (98)
Jacek Dobaczewski 2010-01-30