next up previous
Next: Potentials Up: General forms of the Previous: General forms of the


Building blocks

We begin by recalling definitions that are used to construct operators and densities in the spin and position space. The basic building blocks are given as in Eqs. (8)-(9) of [4], i.e.,

$\displaystyle \sigma_{v=0,0}$ $\textstyle =$ $\displaystyle \sigma_0 ,$ (14)
$\displaystyle \sigma_{v=1,\mu=\left\{-1,0,1\right\}}$ $\textstyle =$ $\displaystyle -i \left\{{\textstyle{\frac{ 1}{\sqrt{2}}}}\left(\sigma_{ x}
-i\...
...extstyle{\frac{-1}{\sqrt{2}}}}\left(\sigma_{ x}
+i\sigma_{ y}\right)\right\} ,$ (15)
$\displaystyle \nabla_{1,\mu=\left\{-1,0,1\right\}}$ $\textstyle =$ $\displaystyle -i \left\{{\textstyle{\frac{ 1}{\sqrt{2}}}}\left(\nabla_x-i\nabla...
...la_z,
{\textstyle{\frac{-1}{\sqrt{2}}}}\left(\nabla_x+i\nabla_y\right)\right\}$ (16)
$\displaystyle k_{1,\mu=\left\{-1,0,1\right\}}$ $\textstyle =$ $\displaystyle -i \left\{{\textstyle{\frac{ 1}{\sqrt{2}}}}\left(k_x-ik_y\right),
k_z,
{\textstyle{\frac{-1}{\sqrt{2}}}}\left(k_x+ik_y\right)\right\} ,$ (17)

where $\vec{k}$ is the relative momentum operator:
\begin{displaymath}
\vec{k}=\frac{1}{2i}\left(\vec{\nabla}-\vec{\nabla}'\right).
\end{displaymath} (18)

All possible N$^3$LO differential operators $D_{nLM}$, which can be built of gradients (16), are given in the Table I of Ref. [4], where $n$ is the order of the operator and $L$ is its rank with magnetic projection $M$. Exactly in the same way, in Ref. [4] we defined the operators $K_{nLM}$, which are spherical tensors built of the relative momentum operators $k$ (17).

Hermitian-conjugation properties of the building blocks read:

$\displaystyle \sigma_{v\mu}^+$ $\textstyle =$ $\displaystyle Q_\sigma(-1)^{v-\mu}\sigma_{v,-\mu} \quad\mbox{for}\quad Q_\sigma=+1,$ (19)
$\displaystyle \nabla_{1\mu}^+$ $\textstyle =$ $\displaystyle Q_\nabla(-1)^{1-\mu}\nabla_{1,-\mu} \quad\mbox{for}\quad Q_\nabla=-1,$ (20)
$\displaystyle k_{1\mu}^+$ $\textstyle =$ $\displaystyle Q_k (-1)^{1-\mu} k_{1,-\mu} \quad\mbox{for}\quad Q_k =+1.$ (21)

For any pair of commuting operators $A_{\lambda\mu}$ and $B_{\lambda\mu}$ that have the following hermitian-conjugation properties:
$\displaystyle A^+_{\lambda\mu}$ $\textstyle =$ $\displaystyle Q_A(-1)^{\lambda-\mu} A_{\lambda,-\mu} ,$ (22)
$\displaystyle B^+_{\lambda'\mu'}$ $\textstyle =$ $\displaystyle Q_B(-1)^{\lambda'-\mu'}B_{\lambda',-\mu'},$ (23)

the operator $C_{LM}$ built by the angular momentum coupling,
$\displaystyle C_{LM} \equiv [A_\lambda B_{\lambda'}]_{LM}$ $\textstyle =$ $\displaystyle \sum_{\mu\mu'} C^{LM}_{\lambda\mu\lambda'\mu'} A_{\lambda\mu}B_{\lambda'\mu'} ,$ (24)

behaves under the hermitian conjugation as:
$\displaystyle C^+_{LM}$ $\textstyle =$ $\displaystyle Q_C(-1)^{L-M} C_{L,-M} \quad\mbox{for}\quad Q_C=Q_AQ_B .$ (25)

As a consequence, we have
$\displaystyle D^+_{nLM} =$ $\textstyle (-1)^{n}$ $\displaystyle (-1)^{L-M}D_{nL,-M} ,$ (26)
$\displaystyle K^+_{nLM} =$   $\displaystyle (-1)^{L-M}K_{nL,-M} .$ (27)

We note that the gradient operators (16) and (17) obey the Biedenharn-Rose phase conventions of

$\displaystyle \nabla_{1\mu}^* =$   $\displaystyle (-1)^{1-\mu}\nabla_{1,-\mu} ,$ (28)
$\displaystyle k_{1\mu}^* =$ $\textstyle -$ $\displaystyle (-1)^{1-\mu} k_{1,-\mu} ,$ (29)

which gives
$\displaystyle D^*_{nLM}$ $\textstyle =$ $\displaystyle (-1)^{L-M}D_{nL,-M} ,$ (30)
$\displaystyle D^+_{nLM}$ $\textstyle =$ $\displaystyle (-1)^{n}D^*_{nLM} ,$ (31)
$\displaystyle D^T_{nLM}$ $\textstyle =$ $\displaystyle (-1)^{n}D_{nLM} ,$ (32)

and
$\displaystyle K^*_{nLM}$ $\textstyle =$ $\displaystyle (-1)^{n}(-1)^{L-M}K_{nL,-M},$ (33)
$\displaystyle K^+_{nLM}$ $\textstyle =$ $\displaystyle (-1)^{n}K^*_{nLM} ,$ (34)
$\displaystyle K^T_{nLM}$ $\textstyle =$ $\displaystyle (-1)^{n}K_{nLM} ,$ (35)

where superscript $T$ denotes the transposed operator.


next up previous
Next: Potentials Up: General forms of the Previous: General forms of the
Jacek Dobaczewski 2010-01-30