next up previous
Next: ISB corrections to the Up: ISB corrections to the Previous: Confidence level test

ISB corrections in $ 78\leq A \leq 98$ nuclei

Our projected DFT approach can be used to predict isospin mixing in heavy nuclei. The calculated ISB corrections and $ Q$-values in $ 78 \le A \le 98$ nuclei are listed in Table 4. The values of $ \delta_{\rm C}$ are also shown in Fig. 12. Note that the predicted ISB corrections are here considerably smaller than those in $ A$=70 and $ A$=74 nuclei, see Tables 2 and 3. For the sake of comparison, Fig. 12 also shows predictions of Ref. [46] for the $ ^{82}$Nb $ \rightarrow ^{82}$Zr transition using the VAMPIR approach with either charge-independent Bonn A potential or charge-dependent Bonn CD potential. Note that our prediction is only slightly below the Bonn A result and significantly lower than the Bonn CD value. For the sake of completeness, it should be mentioned that our $ Q_\beta$-value of 10.379MeV for this transition agrees well with $ Q_\beta=10.496$MeV (Bonn A) and 10.291MeV (Bonn CD) calculated within the VAMPIR approach.

Figure 12: The ISB corrections to the superallowed $ 0^+ \rightarrow 0^+$ transitions in heavy nuclei calculated in the present work (full dots). Vertical bars mark the ISB corrections to the $ ^{82}$Nb $ \rightarrow$$ ^{82}$Zr transition calculated in Ref. [46] by using the VAMPIR formalism with the charge-independent Bonn A and charge-dependent Bonn CD interactions.
\includegraphics[angle=0,width=0.7\columnwidth,clip]{deltaC.fig12.eps}


Table 4: Results of calculations for the superallowed $ \beta$-decays in $ 78\leq A \leq 98$ nuclei: the isospin impurities in the parent and daughter nuclei; $ \delta_{\rm C}$ for different shape-current orientations; averaged (recommended) $ \delta_{\rm C}$; calculated equilibrium deformations $ \beta_2$ and $ \gamma$; and $ Q_\beta$-values calculated here and estimated from the extrapolated masses of Ref. [47].
      $ \quad$ $ \alpha_{\rm C}^{{\rm (P)}}$ $ \alpha_{\rm C}^{{\rm (D)}}$ $ \quad$ $ \delta_{\rm C}^{{\rm (X)}}$ $ \delta_{\rm C}^{{\rm (Y)}}$ $ \delta_{\rm C}^{{\rm (Z)}}$ $ \delta_{\rm C}^{{\rm (SV)}}$ $ \quad$ $ \beta_2^{{\rm (SV)}}$ $ \gamma^{{\rm (SV)}}$ $ \quad$ $ Q_\beta^{{\rm (th)}}$ $ Q_\beta^{{\rm (exp)}}$
      $ \quad$ (%) (%) $ \quad$ (%) (%) (%) (%) $ \quad$   (deg) $ \quad$ (MeV) (MeV)
$ T_z=0$ $ \rightarrow$ $ T_z = 1$                            
$ ^{78}$Y $ \rightarrow$ $ ^{78}$Sr   2.765 0.976   1.20 1.19 1.20 1.20(12)   0.004 60.0   10.471 10.650$ ^{\char93 }$
$ ^{82}$Nb $ \rightarrow$ $ ^{82}$Zr   3.099 1.408   0.70 0.91 0.70 0.77(13)   0.036 60.0   10.379 11.220$ ^{\char93 }$
$ ^{86}$Tc $ \rightarrow$ $ ^{86}$Mo   3.337 1.518   0.89 0.89 1.08 0.95(13)   0.122 0.0   10.965 11.350$ ^{\char93 }$
$ ^{90}$Rh $ \rightarrow$ $ ^{90}$Ru   3.525 1.608   0.99 0.99 1.09 1.02(11)   0.161 0.0   11.465 12.090$ ^{\char93 }$
$ ^{94}$Ag $ \rightarrow$ $ ^{94}$Pd   3.674 1.689   0.86 0.86 1.17 0.96(18)   0.136 0.0   11.896 13.050$ ^{\char93 }$
$ ^{98}$In $ \rightarrow$ $ ^{98}$Cd   3.805 1.771   0.89 0.89 1.36 1.05(25)   0.057 0.0   12.343 13.730$ ^{\char93 }$

Our calculated values of $ \delta_{\rm C}$ are in heavy nuclei considerably smaller than those obtained from a perturbative expression [11,48,5]:

$\displaystyle \delta_{\rm C} = 0.002645 \frac{Z^2}{A^{2/3}} (n+1)(n+ \ell +3/2)\, {\rm (\%)} ,$ (24)

where $ n$ and $ \ell$ denote the number of radial nodes and angular momentum of the valence s.p. spherical wave function, respectively. Indeed, assuming the valence $ 1p_{1/2}$ state in $ A=78$, Eq. (24) yields $ \delta_{\rm C}$=1.54%. In heavier nuclei, where the spherical valence state is $ 0g_{9/2}$, Eq. (24) gives $ \delta_{\rm C}$ values that increase smoothly from 1.30% in $ A=82$ to 1.64% in $ A=98$.


next up previous
Next: ISB corrections to the Up: ISB corrections to the Previous: Confidence level test
Jacek Dobaczewski 2012-10-19