next up previous
Next: The ISB correction to Up: Isospin-breaking corrections to superallowed Previous: ISB corrections in nuclei


ISB corrections to the Fermi matrix elements in mirror-symmetric $ \bm {T=1/2}$ nuclei

Transitions between the isobaric analogue states in mirror nuclei $ \vert T=1/2, I, T_z= -1/2\rangle$ $ \rightarrow$ $ \vert T=1/2, I, T_z= + 1/2\rangle$ offer an alternative way to extract the $ {\cal F}t$-values [49] and $ V_{ud}$ [40,50]. Those transitions are mixed Fermi and Gamow-Teller, meaning that they are mediated by both the vector and axial-vector currents. Hence, the extraction of $ V_{ud}$ requires - in addition to lifetimes and $ Q$-values - measuring another observable, such as the beta-neutrino correlation coefficient, beta-asymmetry, or neutrino-asymmetry parameter [51,52]. Moreover, the method depends on the radiative and ISB corrections to both the Fermi and Gamow-Teller matrix elements. In spite of these difficulties, current precision of determination of $ V_{ud}$ using the mirror-decay approach is similar to that offered by neutron-decay experiments [10,40,50], see also Figs. 8 and 9.

Within our projected-DFT model, we performed systematic calculations of ISB corrections to the Fermi matrix elements, $ \delta_{\text{C}}^{\text{V}}$, covering the mirror transitions in all $ 11\leq A \leq 49$ nuclei. Calculations were based on the Slater determinants corresponding to the lowest-energy, unrestricted-symmetry HF solutions. If the unrestricted-symmetry calculations did not converge, the projection was applied to the constrained HF solutions with imposed signature symmetry. These two types of solutions differ, in particular, in relative shape-current orientation, which also varies with $ A$ depending on the s.p. orbit occupied by an unpaired nucleon. It should be underlined, however, that the HF solutions corresponding to the $ \beta$-decay partners were always characterized by the same orientation of the odd-particle alignment with respect to the body-fixed reference frame. All calculations discussed in this section were performed by using the full basis of $ N=12$ HO shells and the SV force.


Table 5: Results of calculations for $ \vert T=1/2, I, T_z= -1/2\rangle$ $ \rightarrow$ $ \vert T=1/2, I, T_z= + 1/2\rangle$ $ \beta$-decays between mirror nuclei: theoretical spin and parity assignments; isospin-mixing coefficients in the parent and daughter nuclei; ISB corrections calculated in this work (asterisks denote results obtained within unrestricted-symmetry calculations); ISB corrections of Ref. [49]; quadrupole equilibrium deformation parameters in the parent nuclei; and theoretical and experimental $ Q_\beta$ values.
      $ \quad$ $ I^\pi$ $ \quad$ $ \alpha_{\rm C}^{{\rm (P)}}$ $ \alpha_{\rm C}^{{\rm (D)}}$ $ \quad$ $ \delta^{{\rm (SV)}}_{\rm C}$ $ \delta_{\rm C}^{{\rm (S)}}$ $ \quad$ $ \beta_2^{{\rm (SV)}}$ $ \gamma^{{\rm (SV)}}$ $ \quad$ $ Q_\beta^{{\rm (th)}}$ $ Q_\beta^{{\rm (exp)}}$
      $ \quad$   $ \quad$ (%) (%) $ \quad$ (%) (%) $ \quad$   (deg) $ \quad$ (MeV) (MeV)
$ ^{11}$C $ \rightarrow$ $ ^{11}$B   $ \frac{3}{2}^-$   0.001 0.003   0.077 0.928   0.320 43.8   1.656 1.983
$ ^{13}$N $ \rightarrow$ $ ^{13}$C   $ \frac{1}{2}^-$   0.008 0.001   0.139 0.271   0.210 59.1   1.888 2.221
$ ^{15}$O $ \rightarrow$ $ ^{15}$N   $ \frac{1}{2}^-$   0.012 0.002   0.127 0.181   0.003 0.0   2.446 2.754
$ ^{17}$F $ \rightarrow$ $ ^{17}$O   $ \frac{5}{2}^+$   0.020 0.031   0.167 0.585   0.014 0.0   2.496 2.761
            0.019 0.029   $ ^*$0.178 0.585   0.064 60.0   2.499  
$ ^{19}$Ne $ \rightarrow$ $ ^{19}$F   $ \frac{1}{2}^+$   0.036 0.034   0.365 0.415   0.321 0.0   2.928 3.239
$ ^{21}$Na $ \rightarrow$ $ ^{21}$Ne   $ \frac{3}{2}^+$   0.047 0.052   0.307 0.348   0.434 0.0   3.229 3.548
$ ^{23}$Mg $ \rightarrow$ $ ^{23}$Na   $ \frac{3}{2}^+$   0.064 0.070   0.340 0.293   0.434 0.0   3.587 4.057
$ ^{25}$Al $ \rightarrow$ $ ^{25}$Mg   $ \frac{5}{2}^+$   0.073 0.058   0.503 0.461   0.444 1.6   3.683 4.277
$ ^{27}$Si $ \rightarrow$ $ ^{27}$Al   $ \frac{5}{2}^+$   0.074 0.073   0.472 0.312   0.343 47.7   4.250 4.813
$ ^{29}$P $ \rightarrow$ $ ^{29}$Si   $ \frac{1}{2}^+$   0.123 0.113   0.694 0.976   0.332 54.4   4.399 4.943
$ ^{31}$S $ \rightarrow$ $ ^{31}$P   $ \frac{5}{2}^+$   0.163 0.164   0.504 0.715   0.315 0.0   4.855 5.396
$ ^{33}$Cl $ \rightarrow$ $ ^{33}$S   $ \frac{3}{2}^+$   0.177 0.160   0.644 0.865   0.258 33.5   5.002 5.583
$ ^{35}$Ar $ \rightarrow$ $ ^{35}$Cl   $ \frac{3}{2}^+$   0.186 0.182   0.576 0.493   0.209 50.4   5.482 5.966
$ ^{37}$K $ \rightarrow$ $ ^{37}$Ar   $ \frac{3}{2}^+$   0.291 0.267   1.425 0.734   0.143 60.0   5.589 6.149
$ ^{39}$Ca $ \rightarrow$ $ ^{39}$K   $ \frac{3}{2}^+$   0.318 0.289   $ ^*$0.392 0.855   0.034 60.0   6.084 6.531
$ ^{41}$Sc $ \rightarrow$ $ ^{41}$Ca   $ \frac{7}{2}^-$   0.341 0.345   $ ^*$0.426 0.821   0.032 60.0   5.968 6.496
$ ^{43}$Ti $ \rightarrow$ $ ^{43}$Sc   $ \frac{7}{2}^-$   0.376 0.380   $ ^*$0.463 0.500   0.090 60.0   6.225 6.868
$ ^{45}$V $ \rightarrow$ $ ^{45}$Ti   $ \frac{7}{2}^-$   0.437 0.424   0.534 0.865   0.233 0.0   6.563 7.134
            0.438 0.427   $ ^*$0.661 0.865   0.233 0.0   6.559  
$ ^{47}$Cr $ \rightarrow$ $ ^{47}$V   $ \frac{3}{2}^-$   0.480 0.457   0.518 --   0.276 0.0   6.827 7.452
            0.483 0.463   $ ^*$0.710 --   0.275 0.0   6.826  
$ ^{49}$Mn $ \rightarrow$ $ ^{49}$Cr   $ \frac{5}{2}^-$   0.515 0.497   0.522 --   0.284 0.9   7.054 7.715
            0.518 0.499   $ ^*$0.681 --   0.284 0.0   7.053  

The obtained values of the ISB corrections to the Fermi transitions,

$\displaystyle \delta_{\text{C}}^{\text{V}} \equiv 1- \vert \langle T=\frac{1}{2...
...2} \vert \hat T_\mp \vert T= \frac{1}{2},I,T_z=\pm \frac{1}{2} \rangle \vert^2,$ (25)

are collected in Table 5 and illustrated in Fig. 13.
Figure 13: Full circles: calculated values of the ISB corrections to the Fermi transitions in $ T=1/2$ mirror nuclei. Open circles with errors: results calculated by Severijns et al. [49].
\includegraphics[width=0.8\columnwidth]{deltaC.fig13.eps}
Since the calculations were performed in a relatively large basis, the basis-cut-off-related uncertainty in $ \delta_{\text{C}}^{\text{V}}$ could be reduced to approximately $ 5\%$, cf. Sec. 3.3. Except for one case, theoretical spins and parities of decaying states were taken equal to those found in experiment: $ I^\pi_{\text{(th)}}=I^\pi_{{\text{(exp)}}}$(g.s.). Only for $ A=31$, no $ I=1/2$ component was found in the HF wave function, and thus the lowest solution corresponding to $ I^\pi_{\text{(th)}}=5/2^+$ was taken instead. It should be mentioned that, owing to the poor spectroscopic quality of SV, the projected states corresponding to $ I^\pi_{{\text{(exp)}}}$(g.s.) are not always the lowest ones. This situation occurs for $ A = 19$, 25, and 45, where the lowest states have $ I^\pi_{\text{(th)}}=5/2^+$, $ 1/2^+$, and $ 3/2^-$, and the corresponding $ \delta_{\text{C}}^{\text{V}}$ values are 0.308 %, 0.419%, and 0.636%, respectively. A relatively strong dependence of the calculated ISB corrections on spin is worth noting. The calculations also indicate an appreciable impact of the signature-symmetry constraint on $ \delta_{\text{C}}^{\text{V}}$, in particular, in the $ pf$-shell nuclei with $ A=45$, 47, and 49. A similar effect was calculated for the $ 0^+ \rightarrow 0^+$ transitions, see $ \delta_{\rm C}$-values at fixed shape-current orientations in Tables 2 and 3.


next up previous
Next: The ISB correction to Up: Isospin-breaking corrections to superallowed Previous: ISB corrections in nuclei
Jacek Dobaczewski 2012-10-19