|
Table 2 displays the calculated
effective s.p. transition quadrupole moments
, cf. definitions
(15-16). Based on the additivity principle, these
values can be used to predict the total charge transition moments
in highly deformed and SD bands of nuclei:
(31) |
(32) |
(33) |
In CHF+SLy4, the uncertainties of appear to be larger than those for . In CRMF+NL1, however, those uncertainties are similar. This can be traced back to the different -softness of potential energy surfaces in CHF+SLy4 and CRMF+NL1 (see Ref. [18] and references quoted therein for the results obtained in different approaches); current analysis revealing large uncertainties for suggests that the potential energy surfaces are softer (and, thus less localized) in the CHF+SLy4 approach.
Although the values of are generally much smaller than , large uncertainties in the determination of certain moments (especially, for , , , , and orbitals, for which the errors exceed 0.1eb in the CHF+SLy4 approach) can lead to the deterioration of predicted . On the other hand, in many cases the uncertainties in are smaller than the experimental error bars; hence, they are less relevant when comparison with experiment is carried out. Currently available experimental data on relative transition quadrupole moments agree reasonably well with the CHF+SLy4 results [21,20].
Table 2 compares values obtained in CHF+SLy4 and CRMF+NL1 models. The results for proton orbitals are similar in both approaches: the differences between respective values do not exceed 0.1eb. Larger differences are seen for the neutrons: for about 50 percent of calculated orbitals ( , , , , , and ), the difference between values in CHF+SLy4 and CRMF+NL1 exceeds 0.1eb. Interaction (mixing) between those close-lying states (see Fig. 2), predicted differently in the two approaches, is the most likely reason for the deviations seen.
The results of CHF+SLy4 were compared with experimental transition moments in Refs. [21,20]. Here, we show in Fig. 4 a comparison between CRMF+NL1 and experiment for the relative transition quadrupole moments in different highly deformed and SD bands in nuclei with =57-62 involving neutrons and/or proton holes. The agreement between experiment and theory is quite remarkable with all the experimental trends discussed in Refs. [21,20] well reproduced by calculations. One should note that the CRMF and CHF results are close to each other. The general pattern of decreasing with increasing and is consistent with the general expectation that as one adds particles above a deformed shell gap, the deformation-stabilizing effect of the gap is diminished. This trend continues until a new ``magic'' deformed number is reached. Such a situation occurs when going from Ce towards =62 and =80 (Sm), where a large jump in transition quadrupole moment takes place marking the point at which it becomes energetically favorable to fill the high- and orbitals responsible for the existence of the SD island.
It is gratifying to see that CRMF+NL1 reproduces the value of in Sm based on the Ce core (see inset in Fig. 4). Earlier on, it was demonstrated in Refs. [21,20,9] that this value can be also reproduced within CHF using either a Ce or a Dy core.
$±$ | $±$ | $±$ | $±$ | $±$ | $±$ | ||||||||||||||||||
$±$ | $±$ | $±$ | $±$ | $±$ | $±$ | ||||||||||||||||||
State | CSHF + SLy4 | CRMF + NL1 | $±$ | $±$ | $±$ | ||||||||||||||||||
[ ] | $±$ | $±$ | $±$ | ||||||||||||||||||||
[402] | -0.35 | $±$ | 0.01 | 0.14 | $±$ | 0.06 | -0.04 | $±$ | 0.04 | -0.26 | $±$ | 0.02 | -0.02 | $±$ | 0.01 | -0.25 | $±$ | 0.02 | |||||
[402] | -0.34 | $±$ | 0.02 | 0.08 | $±$ | 0.08 | -0.38 | $±$ | 0.05 | -0.26 | $±$ | 0.02 | -0.07 | $±$ | 0.02 | -0.22 | $±$ | 0.03 | |||||
[411] | -0.15 | $±$ | 0.02 | -0.24 | $±$ | 0.10 | -0.01 | $±$ | 0.06 | -0.11 | $±$ | 0.02 | 0.09 | $±$ | 0.02 | -0.16 | $±$ | 0.02 | |||||
[411] | -0.12 | $±$ | 0.01 | 0.06 | $±$ | 0.06 | -0.16 | $±$ | 0.04 | -0.06 | $±$ | 0.02 | -0.17 | $±$ | 0.02 | 0.04 | $±$ | 0.02 | |||||
[411] | -0.15 | $±$ | 0.04 | 0.20 | $±$ | 0.20 | -0.26 | $±$ | 0.12 | -0.13 | $±$ | 0.03 | -0.02 | $±$ | 0.03 | -0.11 | $±$ | 0.03 | |||||
[411] | -0.11 | $±$ | 0.05 | -0.05 | $±$ | 0.24 | -0.08 | $±$ | 0.15 | -0.12 | $±$ | 0.03 | 0.02 | $±$ | 0.03 | -0.12 | $±$ | 0.03 | |||||
[413] | -0.13 | $±$ | 0.02 | -0.05 | $±$ | 0.10 | -0.10 | $±$ | 0.06 | -0.13 | $±$ | 0.03 | -0.04 | $±$ | 0.03 | -0.10 | $±$ | 0.03 | |||||
[413] | -0.12 | $±$ | 0.03 | -0.12 | $±$ | 0.13 | -0.05 | $±$ | 0.08 | -0.11 | $±$ | 0.02 | 0.15 | $±$ | 0.03 | -0.20 | $±$ | 0.03 | |||||
[523] | 0.03 | $±$ | 0.01 | -0.00 | $±$ | 0.05 | 0.03 | $±$ | 0.03 | 0.05 | $±$ | 0.01 | 0.00 | $±$ | 0.01 | 0.04 | $±$ | 0.01 | |||||
[523] | 0.04 | $±$ | 0.01 | -0.01 | $±$ | 0.05 | 0.05 | $±$ | 0.03 | 0.01 | $±$ | 0.02 | -0.00 | $±$ | 0.02 | 0.01 | $±$ | 0.02 | |||||
[530] | 0.22 | $±$ | 0.01 | -0.21 | $±$ | 0.05 | 0.34 | $±$ | 0.03 | 0.17 | $±$ | 0.01 | -0.09 | $±$ | 0.01 | 0.22 | $±$ | 0.01 | |||||
[530] | 0.17 | $±$ | 0.01 | -0.01 | $±$ | 0.05 | 0.18 | $±$ | 0.03 | 0.19 | $±$ | 0.01 | 0.10 | $±$ | 0.01 | 0.13 | $±$ | 0.01 | |||||
[532] | 0.21 | $±$ | 0.03 | 0.21 | $±$ | 0.13 | 0.09 | $±$ | 0.08 | -- | -- | -- | $±$ | ||||||||||
[532] | 0.17 | $±$ | 0.03 | 0.03 | $±$ | 0.13 | 0.15 | $±$ | 0.08 | -- | -- | -- | $±$ | ||||||||||
[532] | 0.19 | $±$ | 0.03 | -0.08 | $±$ | 0.20 | 0.24 | $±$ | 0.12 | 0.17 | $±$ | 0.03 | -0.02 | $±$ | 0.03 | 0.18 | $±$ | 0.03 | |||||
[532] | 0.24 | $±$ | 0.03 | -0.01 | $±$ | 0.20 | 0.25 | $±$ | 0.12 | 0.38 | $±$ | 0.03 | 0.00 | $±$ | 0.03 | 0.38 | $±$ | 0.03 | |||||
[541] | 0.35 | $±$ | 0.03 | -0.04 | $±$ | 0.13 | 0.38 | $±$ | 0.08 | 0.35 | $±$ | 0.02 | -0.00 | $±$ | 0.02 | 0.35 | $±$ | 0.03 | |||||
[541] | 0.37 | $±$ | 0.03 | 0.01 | $±$ | 0.14 | 0.36 | $±$ | 0.08 | 0.33 | $±$ | 0.03 | 0.04 | $±$ | 0.03 | 0.30 | $±$ | 0.03 | |||||
6 | 0.38 | $±$ | 0.01 | 0.21 | $±$ | 0.03 | 0.26 | $±$ | 0.02 | 0.40 | $±$ | 0.01 | 0.12 | $±$ | 0.01 | 0.33 | $±$ | 0.01 | |||||
6 | 0.36 | $±$ | 0.01 | -0.01 | $±$ | 0.04 | 0.37 | $±$ | 0.03 | 0.36 | $±$ | 0.01 | -0.01 | $±$ | 0.01 | 0.37 | $±$ | 0.01 | |||||
6 | 0.35 | $±$ | 0.05 | -0.06 | $±$ | 0.22 | 0.38 | $±$ | 0.13 | -- | -- | -- | $±$ | ||||||||||
[301] | 0.51 | $±$ | 0.05 | -0.10 | $±$ | 0.24 | 0.57 | $±$ | 0.14 | -- | -- | -- | $±$ | ||||||||||
[404] | -0.32 | $±$ | 0.01 | 0.10 | $±$ | 0.04 | -0.38 | $±$ | 0.02 | -0.37 | $±$ | 0.01 | 0.02 | $±$ | 0.01 | -0.38 | $±$ | 0.01 | |||||
[404] | -0.32 | $±$ | 0.01 | 0.09 | $±$ | 0.04 | -0.37 | $±$ | 0.02 | -0.37 | $±$ | 0.01 | 0.02 | $±$ | 0.01 | -0.38 | $±$ | 0.01 | |||||
[411] | -0.05 | $±$ | 0.02 | 0.10 | $±$ | 0.07 | -0.10 | $±$ | 0.05 | -- | -- | -- | $±$ | ||||||||||
[411] | 0.00 | $±$ | 0.01 | -0.22 | $±$ | 0.07 | 0.12 | $±$ | 0.04 | -- | -- | -- | $±$ | ||||||||||
[422] | 0.33 | $±$ | 0.02 | -0.27 | $±$ | 0.10 | 0.48 | $±$ | 0.06 | 0.33 | $±$ | 0.03 | -0.13 | $±$ | 0.02 | 0.40 | $±$ | 0.03 | |||||
[422] | 0.34 | $±$ | 0.02 | 0.14 | $±$ | 0.10 | 0.25 | $±$ | 0.06 | 0.28 | $±$ | 0.02 | 0.16 | $±$ | 0.02 | 0.19 | $±$ | 0.02 | |||||
[532] | 0.43 | $±$ | 0.01 | -0.05 | $±$ | 0.05 | -0.46 | $±$ | 0.03 | 0.41 | $±$ | 0.02 | -0.04 | $±$ | 0.01 | 0.43 | $±$ | 0.02 | |||||
[532] | 0.56 | $±$ | 0.03 | -0.07 | $±$ | 0.09 | 0.60 | $±$ | 0.05 | 0.54 | $±$ | 0.03 | 0.05 | $±$ | 0.03 | 0.51 | $±$ | 0.04 | |||||
[541] | 0.58 | $±$ | 0.02 | -0.01 | $±$ | 0.10 | 0.59 | $±$ | 0.06 | -- | -- | -- | $±$ | ||||||||||
[541] | 0.50 | $±$ | 0.01 | -0.05 | $±$ | 0.06 | 0.52 | $±$ | 0.04 | 0.48 | $±$ | 0.01 | -0.10 | $±$ | 0.01 | 0.54 | $±$ | 0.01 | |||||
[541] | 0.57 | $±$ | 0.01 | -0.12 | $±$ | 0.04 | 0.63 | $±$ | 0.03 | 0.50 | $±$ | 0.01 | -0.10 | $±$ | 0.01 | 0.56 | $±$ | 0.01 | |||||
[550] | 0.49 | $±$ | 0.05 | -0.06 | $±$ | 0.22 | 0.52 | $±$ | 0.14 | 0.47 | $±$ | 0.04 | -0.02 | $±$ | 0.04 | 0.48 | $±$ | 0.04 | |||||
$±$ | $±$ | $±$ | $±$ | $±$ | $±$ |
$±$ | $±$ | ||||||
$±$ | $±$ | ||||||
State | CHF+SLy4 | CRMF+NL1 | $±$ | ||||
[ ] | $±$ | ||||||
[402] | 0.528 | 0.58 | $±$ | 0.14 | 0.47 | $±$ | 0.15 |
[402] | 0.493 | 0.51 | $±$ | 0.20 | 0.38 | $±$ | 0.26 |
[411] | 0.411 | 0.67 | $±$ | 0.24 | 0.64 | $±$ | 0.17 |
[411] | 0.380 | 0.40 | $±$ | 0.15 | 0.09 | $±$ | 0.16 |
[411] | 0.092 | 1.72 | $±$ | 0.46 | 1.35 | $±$ | 0.29 |
[411] | 0.077 | 0.56 | $±$ | 0.57 | 1.08 | $±$ | 0.29 |
[413] | 0.316 | 0.10 | $±$ | 0.23 | 0.44 | $±$ | 0.27 |
[413] | 0.428 | 0.12 | $±$ | 0.30 | 0.14 | $±$ | 0.26 |
[523] | 0.908 | 1.10 | $±$ | 0.10 | 1.24 | $±$ | 0.12 |
[523] | 0.974 | 1.19 | $±$ | 0.12 | 0.92 | $±$ | 0.18 |
[530] | 1.548 | 1.19 | $±$ | 0.11 | 1.86 | $±$ | 0.09 |
[530] | 0.564 | 0.88 | $±$ | 0.11 | 0.93 | $±$ | 0.10 |
[532] | 0.171 | 0.34 | $±$ | 0.30 | -- | ||
[532] | 0.835 | 0.44 | $±$ | 0.31 | -- | ||
[532] | 0.331 | 0.89 | $±$ | 0.46 | 0.95 | $±$ | 0.29 |
[532] | 0.417 | 1.06 | $±$ | 0.46 | 1.29 | $±$ | 0.30 |
[541] | 1.793 | 0.92 | $±$ | 0.31 | 0.95 | $±$ | 0.25 |
[541] | 0.466 | 0.89 | $±$ | 0.32 | 0.34 | $±$ | 0.28 |
6 | 4.840 | 4.78 | $±$ | 0.08 | 4.59 | $±$ | 0.08 |
6 | 4.031 | 3.42 | $±$ | 0.11 | 3.15 | $±$ | 0.10 |
6 | 2.662 | 0.77 | $±$ | 0.50 | -- | ||
[301] | 0.432 | 1.23 | $±$ | 0.55 | -- | ||
[404] | 0.719 | 0.00 | $±$ | 0.09 | 0.09 | $±$ | 0.09 |
[404] | 0.719 | 0.00 | $±$ | 0.09 | 0.11 | $±$ | 0.09 |
[411] | 0.249 | 0.81 | $±$ | 0.18 | -- | ||
[411] | 0.062 | 0.65 | $±$ | 0.16 | -- | ||
[413] | 0.539 | 1.52 | $±$ | 0.53 | -- | ||
[422] | 0.315 | 0.19 | $±$ | 0.25 | 0.21 | $±$ | 0.27 |
[422] | 0.510 | 0.84 | $±$ | 0.23 | 0.38 | $±$ | 0.24 |
[532] | 0.253 | 0.90 | $±$ | 0.13 | 1.11 | $±$ | 0.16 |
[532] | 0.022 | 0.67 | $±$ | 0.20 | -- | ||
[541] | 0.944 | 1.75 | $±$ | 0.23 | -- | ||
[541] | 1.743 | 1.57 | $±$ | 0.13 | 1.18 | $±$ | 0.11 |
[541] | 0.057 | 0.54 | $±$ | 0.10 | 0.48 | $±$ | 0.11 |
[550] | 2.819 | 2.99 | $±$ | 0.52 | 2.86 | $±$ | 0.40 |