1. Dział Linux - 2 tygodnie zajęć
Linia poleceń w systemie Linux:
- Podstawowe polecenia: pwd, mkdir, cp itp.
- Zarządzanie plikami i katalogami oraz prawami dostępu.
- Stosowanie wzorców
Prezentacja z ćwiczeń znajduje się tutaj
2. Dział LaTeX - 2 tygodnie zajęć + projekt do oddania do 30.11
MikTex do instalacji pod Windows, Mac etc: tutaj
- Dokumenty tekstowe w LaTeX, tworzenie kodu źródłowego, kompilacja kodu.
- Wzory matematyczne w LaTeX.
- Środowisko tabel, rysunków, bibliografii.
Prezentacja z ćwiczeń znajduje się tutaj
Zadanie domowe tutaj
Wymagania do projektu tutaj
3. Dział Python - 3 tygodnie zajęć + 1 tydzień na kolokwium
Najłatwiej jest zainstalować pakiet ANACONDA tutaj i używany moduł w pakiecie to notatnik Jupiter albo moduł SPIDER
Materiały do ćwiczeń całość tutaj
Zadania tutaj.
Strona Python3 z dokumentacją: tutaj
Tutorial dla początkujących tutaj
Wstęp do biblioteki matplotlib.pyplot tutaj
Punkty w matplotlib: style tutaj
Dokumentacja pakietu Scipy: tutaj
Skrypty python:
- Użycie bibliotek: numpy, matplotlib.pyplot, scipy
- Definicja własnych zmiennych, funkcji
- Tworzenie i drukowanie tablic: jednowymiarowych i dwuwymiarowych
- Tablice jako argumenty operatorów i funkcji
- Wczytywanie tablic dwuwymiarowych w pliku
- Indeksowanie oraz wycinanie wierszy i kolumn
- Wykreślanie punktów, funkcji zadanych w skrypcie
- Wykreślanie danych z pliku bez niepewności, z niepewnościami
- Edycja wykresu: legenda, tytuły osi, siatka etc.
- Dopasowanie funkcji do danych doświadczalnych
- Eksportowanie wykresów do pliku
- Rysowanie histogramów
4. Dział Mathematica - 4 tygodnie zajęć + 1 tydzień na kolokwium przed komputerem
Instrukcja do instalacji Mathematica na licencji wydziałowej tutaj
Zakres omawianego materiału:
- Proste operacje matematyczne w nootebook'u'
- Wypisywanie znaków alfabetu greckiego, ułamków, całek, granic itd.
- Definiowanie funkcji
- Rozwiązywanie równań (analitycznie i numerycznie).
- Pochodne i całki.
- Operacja na macierzach, w tym diagonalizacja
- Wykresy w 2D typu density i contour i wykresy 3D
- Dopasowanie funkcji (wbudowanych i własnych) do danych doświadczalnych.
Ćwiczenia prowadzone są na podstawie tutorialu ze strony Wolframa: "FAST INTRODUCTION FOR MATH STUDENTS"
Prezentacja z programu Mathematica - przygotował dr hab Artur Kalinowski
Filmiki po angielsku - początki z programem Mathematica - Hands on to start Mathematica: link
Elementary introduction to the Wolfram Language: link
Zadania mathematica - zadania obowiązkowe: 3,4,5, 6,7, 9,10,11,12,13,14, 15 (opracował: Paweł Klimczewski)
Filmik z YOUTUBE - Wstęp: dopasowanie funkcji do danych doświadczalnych link
Import danych, wykresy, dopasowanie funkcji do danych doświadczalnych metoda NonLinearModelFit: zadania (opracował: Jan Suffczyński)
Import danych, wykresy, dopasowanie funkcji do danych doświadczalnych metoda NonLinearModelFit: rozwiązania zadań (opracował: Jan Suffczyński)
Dopasowanie funkcji do danych doświadczalnych z niepewnościami metoda NonLinearModelFit: dokumentacja i przykłady
Import danych, wykresy, dopasowanie funkcji do danych doświadczalnych z niepewnościami metoda LinearModelFit: przykłady na dane line z działu python
Dodawanie niepewności do dopasowania, przy użyciu metody Weights link
Dane Z3_data.dat: plik
Zadania tutaj.