next up previous
Next: Intrinsic average particle number Up: Skyrme HFB+VAPNP procedure: practical Previous: Two kinds of nucleons

Canonical representation

The canonical-basis single-particle wave functions,

$\displaystyle \chi_{\mu}({\bm r},\sigma )= \sum_{n} W_{n\mu}~ \psi_{n}({\bm r},\sigma),$ (75)

are defined by the unitary matrix $ W$ which diagonalizes the density matrices,

\begin{displaymath}\begin{array}{llr} {\sum\limits_{n'} {\rho _{nn'} W_{n'\mu } ...
...{\rho}_{nn'} W_{n'\mu} & = & u_\mu v_\mu W_{n\mu }, \end{array}\end{displaymath} (76)

where $ v_\mu^2$ are the occupation probabilities $ 0 \leq v_\mu^2 \leq 1$ and $ v_\mu^2 + u_\mu^2=1$. In the canonical representation, the gauge-angle-dependent matrices become diagonal with the diagonal matrix elements given by:
$\displaystyle C_{\mu}(\phi_{q})$ $\displaystyle =$ $\displaystyle \frac{e^{2\imath \phi_{q}}}{u_{\mu
q}^{2}+e^{2\imath \phi_{q}}v_{\mu q}^{2}},$ (77)
$\displaystyle \rho_{\mu q}(\phi_{q})$ $\displaystyle =$ $\displaystyle \frac{e^{2\imath \phi_{q}}v_{\mu
q}^{2}}{u_{\mu q
}^{2}+e^{2\imath \phi }v_{\mu q}^{2}},$ (78)
$\displaystyle \tilde{\rho}_{\mu q}(\phi_{q})$ $\displaystyle =$ $\displaystyle \frac{e^{\imath \phi_{q}}u_{\mu
q}v_{\mu
q}}{u_{\mu q}^{2}+e^{2\imath \phi_{q}}v_{\mu q}^{2}},$ (79)

and the determinant of matrix $ C(\phi_{q})$, needed in Eq. (40), becomes a product of the diagonal values (77). The use of the canonical representation significantly simplifies calculations of the projected fields.



Jacek Dobaczewski 2006-10-13