next up previous
Next: Canonical representation Up: Skyrme HFB+VAPNP procedure: practical Previous: Skyrme HFB+VAPNP procedure: practical

Two kinds of nucleons

As one is dealing with $ Z$ protons and $ N$ neutrons, two gauge angles, $ \phi_{n}$ and $ \phi_{p}$, must enter the number projection operator:

$\displaystyle P^{NZ}=\frac{1}{2\pi }\int d\phi_{n}\ e^{i\phi _{n}(\hat{N}-N)}\frac{1}{ 2\pi }\int d\phi_{p}\ e^{i\phi _{p}(\hat{Z}-Z)}.$ (70)

Consequently, the total projected energy (53) becomes a double integral,

$\displaystyle E^{N}=\int d\phi_{n}~d\phi_{p}~y_{n}(\phi_{n})~y_{p}(\phi_{p})~ E(\phi_{n},\phi_{p}),$ (71)

where the transition energy density

$\displaystyle E(\phi_{n},\phi_{p})=\int d{\bm r}~{\cal H}({\bm r},\phi_{n},\phi _{p})$ (72)

depends on both gauge angles $ \phi_{n}$, $ \phi_{p}$.

To simplify notation, we use the isospin label $ q$=$ \tau_3$ ($ q$=+1 for neutrons and -1 for protons) and $ \bar{q}$=$ -q$. In the following, we shall employ the convention $ y(\phi_{q})$$ \equiv$ $ y_q(\phi_{q})$, $ C(\phi_{q})$$ \equiv$ $ C_q(\phi_{q})$, and $ Y(\phi_{q})$$ \equiv$ $ Y_q(\phi_{q})$. The isospin-dependent particle-hole and particle-particle fields (66), (67) can be written as:

$\displaystyle h_{q}^{N}$ $\displaystyle =$ $\displaystyle \int d\phi_{q}~y(\phi_{q})~$  
  $\displaystyle \times$ $\displaystyle \left[ Y(\phi_{q})\left( \int y(\phi_{\bar{q}})~E(\phi
_{q},\phi_{\bar{q}})d\phi_{\bar{q}}~\right) \right.$  
  $\displaystyle +$ $\displaystyle \left. e^{-2i\phi_{q}}~C(\phi_{q})\left( \int y(\phi_{\bar{q
}})~h_{q}(\phi_{q},\phi_{\bar{q}})d\phi_{\bar{q}}~\right) C(\phi
_{q})
\right]$  
  $\displaystyle -$ $\displaystyle \left[ \int d\phi_{q}~y(\phi_{q})\right. 2ie^{-i\phi
_{q}}\sin(\phi
_{q})\tilde{\rho}_q(\phi_{q})$  
  $\displaystyle \times$ $\displaystyle \left. \left( \int y(\phi_{\bar{q}})\tilde{h}_{q}(\phi
_{q},\phi_{\bar{q}})d\phi_{\bar{q}}\right) C(\phi
_{q})+^{\;}h.c.\right] ,$ (73)
$\displaystyle \tilde{h}_{q}^{N}$ $\displaystyle =$ $\displaystyle \int d\phi_{q}~y(\phi_{q})~e^{-i\phi_{q}}$  
  $\displaystyle \times$ $\displaystyle \left[ \left( \int y(\phi_{\bar{q}})\tilde{h}_{q}(\phi
_{q},\phi_{\bar{q}})d\phi_{\bar{q}}\right) C(\phi
_{q})+(...)^{T}\right].$ (74)

In numerical applications, the two-dimensional integrals over the gauge angles are replaced by a sum over $ L_n\times L_p$ points using the Gauss-Chebyshev quadrature method [34].


next up previous
Next: Canonical representation Up: Skyrme HFB+VAPNP procedure: practical Previous: Skyrme HFB+VAPNP procedure: practical
Jacek Dobaczewski 2006-10-13