next up previous
Next: Figures Up: Continuum effects for the Previous: Bibliography

   
Tables


 
Table 1: Parameters used to draw the potentials presented in Fig. 1. Parameters $\nu_{g{9\over2}}$ and $\nu'_{g{9\over2}}$ are used with the PTG and PTG' centrifugal barriers, respectively.
$\Lambda$ $s [\mbox{fm}^{-1}$ $\nu_{s{1\over2}}$ $\nu_{g{9\over2}}$ $\nu'_{g{9\over2}}$
1 0.2192 6.719 6.188 7.199
3 0.09259 5.165 5.470 5.176
7 0.04059 5.034 5.372 4.693
 


 
Table 2: Depth parameters of the PTG potential, for which the 3s1/2 state is resonant, virtual, or bound, and for which the 2d3/2 state is resonant or virtual. The other two parameters are $\Lambda$=7 and s=0.04059.
case   $\nu_{Lj}$ energy
(a) resonant 3s1/2 state 4.882 $\epsilon_{\mbox{\scriptsize {res}}}$=(74-4225i)keV
(b) virtual 3s1/2 state 4.972 $\epsilon_{\mbox{\scriptsize {virt}}}$=-84keV
(c) bound 3s1/2 state 5.034 $\epsilon_{\mbox{\scriptsize {bound}}}$=-74keV
(d) resonant 2d3/2 state 4.850 $\epsilon_{\mbox{\scriptsize {res}}}$=(649-2610i)keV
(c) virtual 2d3/2 state 4.900 $\epsilon_{\mbox{\scriptsize {virt}}}$=(-247-1776i)keV
 


 
Table 3: Depth parameters of the PTG' potential (9) defining the neutron spectrum used in the HFB calculations. Parameters not given here are listed in Table 2.
Lj $\nu_{Lj}$ Lj $\nu_{Lj}$ Lj $\nu_{Lj}$ Lj $\nu_{Lj}$
s 1/2 Table 2 p 1/2 4.640 p 3/2 4.880 d 3/2 Table 2
d 5/2 5.180 f 5/2 4.300 f 7/2 4.720 g 7/2 4.420
g 9/2 4.800 h 9/2 4.493 h11/2 4.992 i11/2 4.493
i13/2 4.493 j13/2 4.493        
 


 
Table 4: Properties of the HFB solutions obtained for the PTG' potentials which give the resonant (a), virtual (b), and weakly bound (c) 3s1/2single-particle states, or the 2d3/2low-energy narrow resonances at two different positions. The neutron Fermi energies $\lambda_N$ and average pairing gaps $\langle\Delta_N\rangle$ [6] are given together with the canonical energies $\epsilon_{\mbox{\scriptsize {can}}}$ [12] and occupation factors $v^2_{\mbox{\scriptsize {can}}}$. All energies are in keV.
case $\lambda_N$ $\langle\Delta_N\rangle$ Lj $\epsilon_{\mbox{\scriptsize {can}}}$ $v^2_{\mbox{\scriptsize {can}}}$
(a) -314 1146 3s1/2 2148 0.0321
(b) -384 1292   1043 0.1002
(c) -488 1421   390 0.2083
(d) -436 1217 2d3/2 1765 0.0548
(c) -488 1421   1107 0.1149
 


next up previous
Next: Figures Up: Continuum effects for the Previous: Bibliography
Jacek Dobaczewski
1999-05-16