next up previous
Next: Transition matrix elements and Up: Particle-Number-Projected HFB Previous: Projected HFB states


HFB sum rules

Since the HFB state (11) is a superposition of projected states (13),

\begin{displaymath}
\vert\Phi\rangle=\sum_{N=0}^{\infty}\vert\Psi_N\rangle ,
\end{displaymath} (18)

the HFB energy $E_{\mbox{\rm\scriptsize {HFB}}}$,
\begin{displaymath}
E_{\mbox{\rm\scriptsize {HFB}}}= \langle\Phi\vert\hat{H}\vert\Phi\rangle ,
\end{displaymath} (19)

can be expressed as the sum of projected energies (15),
\begin{displaymath}
E_{\mbox{\rm\scriptsize {HFB}}}=\sum_{N=0}^{\infty}\langle\Psi_N\vert\Psi_N\rangle E^N_{\mbox{\rm\scriptsize {HFB}}} ,
\end{displaymath} (20)

weighted by probabilities $\langle\Psi_N\vert\Psi_N\rangle$= $\langle\Phi\vert\Psi_N\rangle$= $\langle\Phi\vert\hat{P}_N\vert\Phi\rangle$ of finding a given PN component in the HFB state. Expression (20) constitutes a useful sum-rule condition, which has to be obeyed by any Hamiltonian-based HFB+PNP approach, and can be used to test the numerical precision of PNP techniques.

A similar sum rule holds for any shifted state

\begin{displaymath}
\vert\Phi(z_0)\rangle=\sum_{N=0}^{\infty}\vert\Psi_N(z_0)\rangle ,
\end{displaymath} (21)

i.e.,
\begin{displaymath}
\langle\Phi(z_0)\vert\hat{H}\vert\Phi(z_0)\rangle
=\sum_{N=...
...le\Psi_N\vert\Psi_N\rangle E^N_{\mbox{\rm\scriptsize {HFB}}} ,
\end{displaymath} (22)

where the average energy of the shifted and unnormalized HFB state is related to its HFB energy $E_{\mbox{\rm\scriptsize {HFB}}}(z_0)$ as
\begin{displaymath}
E_{\mbox{\rm\scriptsize {HFB}}}(z_0)= \frac{\langle\Phi(z_0)...
...t\Phi(z_0)\rangle}
{\langle\Phi(z_0)\vert \Phi(z_0)\rangle} .
\end{displaymath} (23)

Finally, the sum rule for the non-diagonal matrix elements can be written as:
\begin{displaymath}
\langle\Phi\vert\hat{H}\vert\Phi(z_0)\rangle
=\sum_{N=0}^{\...
...le\Psi_N\vert\Psi_N\rangle E^N_{\mbox{\rm\scriptsize {HFB}}} .
\end{displaymath} (24)


next up previous
Next: Transition matrix elements and Up: Particle-Number-Projected HFB Previous: Projected HFB states
Jacek Dobaczewski 2007-08-08