next up previous
Next: Nuclear Incompressibility Up: Giant Monopole Resonances and Previous: QRPA method


Separable Pairing Interaction

The separable finite-range pairing interaction for neutrons ($ \tau=n$) and protons ($ \tau=p$) that we use in this study is defined as [19]

$\displaystyle \hat{V}_\tau (\bm{r}_1 s_1, \bm{r}_2 s_2; \bm{r}'_1 s'_1, \bm{r}'_2 s'_2)
\hspace*{-3cm}$   $\displaystyle \nonumber$  
  $\displaystyle =$ $\displaystyle - G_\tau \delta (\bm{R}-\bm{R}') P(r) P(r')
\frac{1}{2} (1-\hat{P}_{\sigma}) ,$ (25)

where $ \bm{R}=(\bm{r}_1+\bm{r}_2)/2$ denotes the centre of mass coordinate, $ \bm{r}=\bm{r}_1-\bm{r}_2$ is the relative coordinate, $ r=\vert\bm{r}\vert$, $ \hat{P}_{\sigma}$ is the standard spin-exchange operator, and function $ P(r)$ is a sum of $ m$ Gaussian terms,

$\displaystyle P(r)=\frac{1}{m} \sum_{i=1}^{m} \frac{1}{(4\pi a_i^2)^{3/2}}$   e$\displaystyle ^{-\frac{r^2}{4a_i^2}} .$ (26)

Coupling constants $ G_\tau$ define the pairing strengths for neutrons and protons.

For such a pairing interaction, the pairing energy acquires a fully separable form, which in spherical symmetry reads

$\displaystyle E_{\text{pair}}^{\text{sep}}$ $\displaystyle =$ $\displaystyle - \frac{1}{2} \sum_{NJ\tau} G_\tau \Bigl( \sum_{\mu \nu} V_{\mu \...
...
\langle\psi_{\mu}\vert\vert\kappa'^{+J}_\tau\vert\vert\psi_{\nu}\rangle \Bigr)$  
    $\displaystyle \hspace*{1.5cm}\times\Bigl( \sum_{\mu' \nu'} V_{\mu' \nu'}^{NJ}
\langle\psi_{\mu'}\vert\vert\kappa^{J}_\tau\vert\vert\psi_{\nu'} \rangle \Bigr) ,$ (27)

and depends on the reduced matrix elements of the pairing densities $ \kappa_\tau$ and $ \kappa'^{+}_\tau$ between the single-particle wave functions $ \psi_\mu(\bm{r})$ for $ \mu$ denoting the set of spherical harmonic-oscillator quantum numbers $ n_\mu l_\mu j_\mu$. The interaction matrix elements $ V_{\mu \nu}^{NJ}$ are defined as
$\displaystyle V_{\mu \nu}^{NJ}$ $\displaystyle =$ $\displaystyle \sqrt{(4\pi)(2J+1)(2j_{\mu}+1)(2j_{\nu}+1)}
\begin{Bmatrix}l_{\m...
...u} & J \\ \frac{1}{2} & \frac{1}{2} &
0 \\ j_{\mu} & j_{\nu} & J \end{Bmatrix}$  
  $\displaystyle \times$ $\displaystyle M^{NJn0}_{n_{\mu}l_{\mu}n_{\nu}l_{\nu}} \frac{2^{1/4}}{b^{3/2}}
\...
...}(2n+1)!}{2(2^nn!)^2}}
\frac{1}{m} \sum_{i=1}^{m} \frac{1}{(4\pi a_i^2)^{3/2}}$  
  $\displaystyle \times$ $\displaystyle \Bigl(
\frac{2a_i^2b^2}{1+a_i^2b^2} \Bigr)^{3/2}
\Bigl( \frac{1-a_i^2b^2}{1+a_i^2b^2} \Bigr)^{n} ,$ (28)

where $ 2n=2n_{\mu}+l_{\mu}+2n_{\nu}+l_{\nu}-2N-J$, $ M^{N\lambda n0}_{n_{\mu}l_{\mu}n_{\nu}l_{\nu}}$ are the standard Talmi-Moshinski coefficients [27], and $ b=\sqrt{m\omega/\hbar}$ denotes the harmonic-oscillator constant.


next up previous
Next: Nuclear Incompressibility Up: Giant Monopole Resonances and Previous: QRPA method
Jacek Dobaczewski 2012-02-28