next up previous
Next: Exchange Coulomb energy Up: The NLO potentials, fields, Previous: The total potential energy


Direct Coulomb energy in the spherical symmetry

The integral for the direct Coulomb energy in spherical symmetry has a integrand which has a discontinuous first derivative. In order to get an integral which is easier to calculate using Gauss-Hermite integration we use the 'Vautherin trick' [8]

    $\displaystyle \frac{e^2}{2} \int{\rm d}^3\vec{r}\,{\rm d}^3\vec{r}'\,
\rho\left(r\right)\frac{1}{\left\vert\vec{r}-\vec{r}'\right\vert}\rho\left(r'\right)$  
  $\textstyle =$ $\displaystyle \frac{\left(4\pi\right)^{2}e^2}{6}\int{\rm d}\,{r}\,{\rm d}\,{r}'...
...\vert r-r'\right\vert^{3}\right]rr'\rho\left(r\right)\Delta'\rho\left(r'\right)$  
  $\textstyle =$ $\displaystyle \frac{4\pi e^2}{2\sqrt{3}}\int {\rm d}\,{r}\,{\rm d}\,{r}'\,
\tilde{\rho}_{00,0000,0}\left(r\right)re^{-(br)^{2}}$  
    $\displaystyle \times
\int {\rm d}\,{r}\,
\left[\left(r+r'\right)^{3}-\left\ver...
...r'\right\vert^{3}\right]r'\tilde{\rho}_{20,0000,0}\left(r'\right)e^{-(br')^{2}}$  
  $\textstyle =$ $\displaystyle \frac{4\pi e^2}{2 \sqrt{3}}\int\tilde{\rho}_{00,0000,0}\left(r\right)re^{-(br)^{2}}V_{DC}\left(r\right)$ (117)

which gives a smoother integrand. However in order to perform the linear-response calculations, where expressions for non-spherical multipoles are needed, we also developed a different method which will be presented elsewhere [9].



Jacek Dobaczewski 2010-01-30