next up previous
Next: Axially Deformed Nuclei Up: Skyrme Hartree-Fock-Bogoliubov Method Previous: Skyrme Energy Density Functional


Skyrme Hartree-Fock-Bogoliubov Equations

Variation of the energy (9) with respect to $\rho $ and $\tilde{\rho}$ results in the Skyrme HFB equations:

\begin{displaymath}
\sum_{\sigma'}
\left(\begin{array}{cc}
h({\bf
r},\sigma,\sig...
... (E,{\bf r}\sigma) \\
V (E,{\bf r}\sigma)
\end{array}\right),
\end{displaymath} (16)

where local fields $ h({\bf r},\sigma ,\sigma^{\prime })$ and $\tilde{h}({\bf r},\sigma ,\sigma^{\prime })$ can be easily calculated in the coordinate space by using the following explicit expressions:
\begin{displaymath}
\begin{array}{rcl}
h_{q}({\bf r},\sigma ,\sigma^{\prime }) &...
...rho}{\rho_0}\right)^\gamma \right)\tilde{\rho}_{q},
\end{array}\end{displaymath} (17)

where
\begin{displaymath}
\begin{array}{lcl}
M_{q} &=&\frac{\hbar^{2}}{2m}+{\textstyle...
...{\bf J}_{ij}\right. +\left. {\bf J}_{q,ij}\right] .
\end{array}\end{displaymath} (18)

Properties of the HFB equation in the spatial coordinates, Eq. (16), have been discussed in Ref. [2]. In particular, it has been shown that the spectrum of eigenenergies $E$ is continuous for $\vert E\vert$$>$$-\lambda$ and discrete for $\vert E\vert$$<$$-\lambda$. In the present implementation, we solve the HFB equations by expanding quasiparticle wave functions on a finite basis; therefore, the quasiparticle spectrum $E_k$ becomes discretized. Hence in the following we use the notation $V_k({\bf r}\sigma)=V(E_k,{\bf r}\sigma)$ and $U_k({\bf r}\sigma)
=U(E_k,{\bf r}\sigma)$. Since for $E_k$$>$0 and $\lambda $$<$0 the lower components $V_k({\bf r}\sigma)$ are localized functions of ${\bf
r}$, the density matrices,

$\displaystyle \rho({\bf r}\sigma,{\bf r}'\sigma')$ $\textstyle =$ $\displaystyle ~~ \sum_k V_k
({\bf r} \sigma ) V_k^*({\bf r}'\sigma')
,$ (19)
$\displaystyle \tilde\rho({\bf r}\sigma,{\bf r}'\sigma')$ $\textstyle =$ $\displaystyle - \sum_k V_k({\bf r} \sigma ) U_k^*({\bf
r}'\sigma') ,$ (20)

are always localized. The orthogonality relation for the single-quasiparticle HFB wave functions reads
\begin{displaymath}
\int\mbox{\scriptsize {d}}^3{\bf r} \sum_{\sigma} \left[ U_k...
...f r} \sigma ) V_{k'}
({\bf r}\sigma) \right] = \delta_{k,k'} ,
\end{displaymath} (21)

and the norms of lower components $N_k$,
\begin{displaymath}
N_k = \int\mbox{\scriptsize {d}}^3{\bf r}\sum_{\sigma}\vert V_k({\bf r} \sigma
)\vert^2,
\end{displaymath} (22)

define the total number of particles
\begin{displaymath}
N=\int\mbox{\scriptsize {d}}^3{\bf r}~\rho({\bf r}) = \sum_{n}N_k.
\end{displaymath} (23)


next up previous
Next: Axially Deformed Nuclei Up: Skyrme Hartree-Fock-Bogoliubov Method Previous: Skyrme Energy Density Functional
Jacek Dobaczewski 2004-06-25