Next: Skyrme Hartree-Fock-Bogoliubov Equations
Up: Skyrme Hartree-Fock-Bogoliubov Method
Previous: Skyrme Hartree-Fock-Bogoliubov Method
Skyrme Energy Density Functional
For Skyrme forces, the HFB energy (6) has the form of
a local energy density functional,
![\begin{displaymath}
E[\rho,\tilde{\rho}]=\int d^3{\bf r}~{\cal H}({\bf r}) ,
\end{displaymath}](img34.png) |
(9) |
where
 |
(10) |
is the sum of the
mean-field and pairing energy densities. In the present implementation,
we use the following explicit forms:
![\begin{displaymath}
\begin{array}{rll}
H({\bf r}) & = & {\textstyle{\frac{\hbar^...
...left.
\rho_{q}{\bf\nabla }_{k}{\bf J}_{q,ij}\right]
\end{array}\end{displaymath}](img36.png) |
(11) |
and
![\begin{displaymath}
\displaystyle \tilde{H}({\bf r}) = {\textstyle{\frac{1}{2}}}...
...}\right)^\gamma~
\right]\sum\limits_{q}\tilde{\rho}_{q}^{2} .
\end{displaymath}](img37.png) |
(12) |
Index
labels the neutron (
) or proton
(
) densities, while densities without index
denote
the sums of proton and neutron densities.
and
depend on the
particle local density
, pairing local density
, kinetic energy density
, and spin-current density
:
 |
(13) |
where
are defined by
the spin-dependent one-body density matrices in the standard way:
 |
(14) |
We use the pairing density matrix
,
 |
(15) |
instead of the pairing tensor
. This is convenient when
describing time-even quasiparticle states when both
and
are hermitian and time-even [2].
In the pairing energy density (12), we have restricted our
consideration to contact delta pairing forces in order to reduce the
complexity of the general expressions [2,28].
Next: Skyrme Hartree-Fock-Bogoliubov Equations
Up: Skyrme Hartree-Fock-Bogoliubov Method
Previous: Skyrme Hartree-Fock-Bogoliubov Method
Jacek Dobaczewski
2004-06-25