next up previous
Next: Skyrme Hartree-Fock-Bogoliubov Equations Up: Skyrme Hartree-Fock-Bogoliubov Method Previous: Skyrme Hartree-Fock-Bogoliubov Method


Skyrme Energy Density Functional

For Skyrme forces, the HFB energy (6) has the form of a local energy density functional,

\begin{displaymath}
E[\rho,\tilde{\rho}]=\int d^3{\bf r}~{\cal H}({\bf r}) ,
\end{displaymath} (9)

where
\begin{displaymath}
{\cal H}({\bf r})=H({\bf r})+\tilde{H}({\bf r})
\end{displaymath} (10)

is the sum of the mean-field and pairing energy densities. In the present implementation, we use the following explicit forms:
\begin{displaymath}
\begin{array}{rll}
H({\bf r}) & = & {\textstyle{\frac{\hbar^...
...left.
\rho_{q}{\bf\nabla }_{k}{\bf J}_{q,ij}\right]
\end{array}\end{displaymath} (11)

and
\begin{displaymath}
\displaystyle \tilde{H}({\bf r}) = {\textstyle{\frac{1}{2}}}...
...}\right)^\gamma~
\right]\sum\limits_{q}\tilde{\rho}_{q}^{2} .
\end{displaymath} (12)

Index $q$ labels the neutron ($q=n$) or proton ($q=p$) densities, while densities without index $q$ denote the sums of proton and neutron densities. $H({\bf r})$ and $\tilde{H}({\bf r})$ depend on the particle local density $\rho ({\bf r})$, pairing local density $\tilde{\rho}({\bf r})$, kinetic energy density $ \tau ({\bf
r})$, and spin-current density ${\bf
J}_{ij}({\bf r})$:
\begin{displaymath}
\begin{array}{c}
\begin{array}{ccl}
\rho ({\bf r}) & = & \rh...
...ght\vert _{{\bf r}^{\prime }{\bf =r}}\;,
\end{array}\end{array}\end{displaymath} (13)

where $\rho ({\bf r},{\bf r}^{\prime }),\,\rho_{i}({\bf r},{\bf
r}^{\prime }),\,\tilde{\rho}({\bf r},{\bf r}^{\prime
}),\,\tilde{\rho}_{i}({\bf r},{\bf r}^{\prime })$ are defined by the spin-dependent one-body density matrices in the standard way:
\begin{displaymath}
\begin{array}{rcl}
\rho ({\bf r}\sigma ,{\bf r^{\prime }}\si...
...me })\tilde{\rho}_{i}( {\bf r},{\bf
r}^{\prime }) .
\end{array}\end{displaymath} (14)

We use the pairing density matrix $\tilde{\rho}$,
\begin{displaymath}
\tilde{\rho}({\bf r}\sigma ,{\bf r^{\prime }}\sigma^{\prime
...
...\kappa ({\bf r,}\sigma ,{\bf r^{\prime
},}-\sigma^{\prime }) ,
\end{displaymath} (15)

instead of the pairing tensor $\kappa $. This is convenient when describing time-even quasiparticle states when both $\rho $ and $\tilde{\rho}$ are hermitian and time-even [2]. In the pairing energy density (12), we have restricted our consideration to contact delta pairing forces in order to reduce the complexity of the general expressions [2,28].


next up previous
Next: Skyrme Hartree-Fock-Bogoliubov Equations Up: Skyrme Hartree-Fock-Bogoliubov Method Previous: Skyrme Hartree-Fock-Bogoliubov Method
Jacek Dobaczewski 2004-06-25