next up previous
Next: Spherical symmetry Up: The Skyrme Hartree-Fock-Bogolyubov equations Previous: The Skyrme Hartree-Fock-Bogolyubov equations

Local densities

In the Skyrme-HFB formalism, the evaluation of the expectation value of the energy leads to an expression which is a functional of the local densities, namely, the particle (normal) and pairing (abnormal) densities

$\displaystyle \rho(r) = \sum_{i} \varphi_2(E_i,r)^2 \hskip 5mm$and$\displaystyle \hskip 6mm \tilde\rho(r) = -\sum_{i} \varphi_1(E_i,r)\varphi_2(E_i,r)\,,$ (4)

and their derivatives. The presence of non local terms in the force leads to a dependence on the normal and abnormal kinetic densities
$\displaystyle \tau({\mathbf r})$ $\displaystyle =$ $\displaystyle \displaystyle
\sum_{i} \left\vert\boldsymbol\nabla\varphi_2(E_i,{\mathbf r})\right\vert^2\,, \hfill$ (5)
$\displaystyle \tilde\tau({\mathbf r})$ $\displaystyle =$ $\displaystyle \displaystyle
-\sum_{i} \boldsymbol\nabla\varphi_1(E_i,{\mathbf r})\cdot
\boldsymbol\nabla\varphi_2(E_i,{\mathbf r})\,,$ (6)

while the spin-orbit term leads to a dependence on the spin current tensors $ {\mathbb{J}}_{ij}$ and $ \tilde{\mathbb{J}}_{ij}$. We do not give here the definitions of these tensors, because for the spherical symmetry discussed here they reduce to the corresponding spin current vectors $ {\mathbf J}$ and $ \tilde{\mathbf J}$
$\displaystyle \mathbf J({\mathbf r})$ $\displaystyle =$ $\displaystyle \displaystyle \mathrm{i}\sum_{i}
\varphi_2(E_i,{\mathbf r})
{\bol...
...athbf r})
\langle \sigma'\vert\hat{\boldsymbol\sigma}\vert\sigma\rangle, \hfill$ (7)
$\displaystyle \tilde{\mathbf J}({\mathbf r})$ $\displaystyle =$ $\displaystyle \displaystyle -\mathrm{i}\sum_{i}
\varphi_1(E_i,{\mathbf r})
{\bo...
...E_i,{\mathbf r})
\langle \sigma'\vert\hat{\boldsymbol\sigma}\vert\sigma\rangle.$ (8)


next up previous
Next: Spherical symmetry Up: The Skyrme Hartree-Fock-Bogolyubov equations Previous: The Skyrme Hartree-Fock-Bogolyubov equations
Jacek Dobaczewski 2005-01-23