Next: Mean-field calculations with tensor
Up: Tensor densities in the
Previous: Spin-orbit and tensor forces
Within the energy-density approach, one does not relate the EDF to an
average of the two-body force, but one postulates the EDF based on
symmetry conditions only. Then, the most general EDF, depending on the
spin-current densities, reads[4]
|
(5) |
where the spherical-symmetry condition has been released.
The
standard pseudoscalar
, vector
,
and pseudotensor
parts of the
spin-current density,[16]
|
(6) |
are defined as
|
(7) |
The tensor energy density
now depends
on six coupling constants, , , and ,
for =0,1, and not on two coupling constants, and , as in Eq. 3.
Similarly, the SO energy density
depends now on two coupling constants
for =0,1,
and not on one, , (the latter generalization has been introduced
and studied in Ref.[17]).
From the symmetry conditions imposed by the spherical, axial, and
reflection symmetries one obtains[18] that:
- 1
- The pseudoscalar densities
vanish unless the axial or reflection symmetries are broken.
- 2
- The pseudotensor densities
vanish unless the spherical symmetry is broken.
Finally, the gauge-invariance symmetry conditions[4]
require that there are only two gauge-invariant combinations
of the pseudoscalar, vector,
and pseudotensor terms, namely,
|
(8) |
In such a case, only four out of the six tensor coupling constants are linearly
independent, i.e.,
|
(9) |
On the other hand, the averaging of the tensor forces (1)
implies that only two out of the six tensor coupling constants remain
linearly independent, i.e.,
|
(10) |
Next: Mean-field calculations with tensor
Up: Tensor densities in the
Previous: Spin-orbit and tensor forces
Jacek Dobaczewski
2006-04-22