Properties of nuclei in the nobelium region studied within the covariant, Skyrme, and Gogny energy density functionals




J. Dobaczewski$^{1-4}$, A.V. Afanasjev$^5$, M. Bender$^{6,7}$, L.M. Robledo$^8$, and Yue Shi$^{9}$




$^1$Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
$^2$Department of Physics, P.O. Box 35 (YFL), University of Jyväskylä
FI-40014 Jyväskylä, Finland
$^3$Institute of Theoretical Physics, Faculty of Physics, University of Warsaw
Pasteura 5, PL-02-093 Warsaw, Poland
$^4$Helsinki Institute of Physics, P.O. Box 64, FI-00014 Helsinki, Finland
$^5$Department of Physics and Astronomy, Mississippi State University
Mississippi State, Mississippi 39762, USA
$^6$Université de Bordeaux, Centre d'Etudes Nucléaires de Bordeaux Gradignan
UMR5797, F-33175 Gradignan, France
$^7$CNRS/IN2P3, Centre d'Etudes Nucléaires de Bordeaux Gradignan
UMR5797, F-33175 Gradignan, France
$^8$Departamento de Física Teórica, Universidad Autónoma de Madrid
E-28049 Madrid, Spain
$^9$National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan, 48824-1321, USA

Abstract:

We calculate properties of the ground and excited states of nuclei in the nobelium region for proton and neutron numbers of $92\leq
Z\leq104$ and $144\leq N\leq156$, respectively. We use three different energy-density-functional (EDF) approaches, based on covariant, Skyrme, and Gogny functionals, each with two different parameter sets. A comparative analysis of the results obtained for quasiparticle spectra, odd-even and two-particle mass staggering, and moments of inertia allows us to identify single-particle and shell effects that are characteristic to these different models and to illustrate possible systematic uncertainties related to using the EDF modelling.



Jacek Dobaczewski 2015-08-21