Adamian et al. (2016)
Adamian G G, Antonenko N V, Lenske H, Tolokonnikov S V and Saperstein
E E 2016 Isotopic trends of nuclear surface properties of spherical nuclei
Phys. Rev. C94, 054309.
https://link.aps.org/doi/10.1103/PhysRevC.94.054309
Agbemava et al. (2017)
Agbemava S E, Afanasjev A V, Ray D and Ring P 2017 Assessing
theoretical uncertainties in fission barriers of superheavy nuclei Phys.
Rev. C95, 054324.
https://link.aps.org/doi/10.1103/PhysRevC.95.054324
Agbemava et al. (2019)
Agbemava S E, Afanasjev A V, Taninah A and Gyawali A 2019 Extension
of the nuclear landscape to hyperheavy nuclei Phys. Rev. C99, 034316.
https://link.aps.org/doi/10.1103/PhysRevC.99.034316
Andreyev et al. (2017)
Andreyev A N, Nishio K and Schmidt K H 2017 Nuclear fission: a review
of experimental advances and phenomenology Rep. Prog. Phys.81(1), 016301.
https://doi.org/10.1088/1361-6633/aa82eb
Baldo et al. (2013)
Baldo M, Robledo L M, Schuck P and Viñas X 2013 New Kohn-Sham
density functional based on microscopic nuclear and neutron matter equations
of state Phys. Rev. C87(6), 064305.
https://link.aps.org/doi/10.1103/PhysRevC.87.064305
Balian and Vénéroni (1981)
Balian R and Vénéroni M 1981 Time-dependent variational
principle for predicting the expectation value of an observable Phys.
Rev. Lett.47, 1353–1356.
https://link.aps.org/doi/10.1103/PhysRevLett.47.1353
Banerjee et al. (2019)
Banerjee K, Hinde D J, Dasgupta M, Simpson E C, Jeung D Y, Simenel C,
Swinton-Bland B M A, Williams E, Carter I P, Cook K J, David H M, Düllmann
C E, Khuyagbaatar J, Kindler B, Lommel B, Prasad E, Sengupta C, Smith J F,
Vo-Phuoc K, Walshe J and Yakushev A 2019 Mechanisms suppressing
superheavy element yields in cold fusion reactions Phys. Rev. Lett.122, 232503.
https://link.aps.org/doi/10.1103/PhysRevLett.122.232503
Baran et al. (2008)
Baran A, Bulgac A, Forbes M, Hagen G, Nazarewicz W, Schunck N and Stoitsov M 2008 Broyden’s method in nuclear structure calculations Phys. Rev. C78(1), 014318.
https://link.aps.org/doi/10.1103/PhysRevC.78.014318
Baran et al. (2011)
Baran A, Sheikh J A, Dobaczewski J, Nazarewicz W and Staszczak A 2011
Quadrupole collective inertia in nuclear fission: Cranking approximation
Phys. Rev. C84, 054321.
https://link.aps.org/doi/10.1103/PhysRevC.84.054321
Barrett et al. (1978)
Barrett B R, Shlomo S and Weidenmüller H A 1978 Microscopic
calculation of the form factors for deeply inelastic heavy-ion collisions
within the statistical model Phys. Rev. C17, 544–554.
https://link.aps.org/doi/10.1103/PhysRevC.17.544
Bartel et al. (1982)
Bartel J, Quentin P, Brack M, Guet C and Håkansson H B 1982
Towards a better parametrisation of Skyrme-like effective forces: A
critical study of the SkM force Nuclear Physics A386(1), 79 – 100.
http://www.sciencedirect.com/science/article/pii/0375947482904031
Becker et al. (2017)
Becker P, Davesne D, Meyer J, Navarro J and Pastore A 2017 Solution
of Hartree-Fock-Bogoliubov equations and fitting procedure using the
N2LOSkyrme pseudopotential in spherical symmetry Phys. Rev. C96, 044330.
https://link.aps.org/doi/10.1103/PhysRevC.96.044330
Behera et al. (2016)
Behera B, Viñas X, Routray T R, Robledo L M, Centelles M and Pattnaik S P 2016 Deformation properties with a finite-range simple
effective interaction Journal of Physics G: Nuclear and Particle
Physics43(4), 045115.
https://doi.org/10.1088/0954-3899/43/4/045115
Bender et al. (2009)
Bender M, Duguet T and Lacroix D 2009 Particle-number restoration
within the energy density functional formalism Phys. Rev. C79, 044319.
https://link.aps.org/doi/10.1103/PhysRevC.79.044319
Bender et al. (2019)
Bender M, Schunck N, Ebran J P and Duguet T 2019 in ‘Energy
Density Functional Methods for Atomic Nuclei’ 2053-2563 IOP Publishing
pp. 3–1 to 3–78.
http://dx.doi.org/10.1088/2053-2563/aae0edch3
Bennaceur (2020)
Bennaceur K 2020.
et al, code finres, to be submitted to Comput.
Phys. Commun.
Bennaceur et al. (2017)
Bennaceur K, Idini A, Dobaczewski J, Dobaczewski P, Kortelainen M and Raimondi F 2017 Nonlocal energy density functionals for pairing and
beyond-mean-field calculations J. Phys. G44(4), 045106.
https://doi.org/10.1088/1361-6471/aa5fd7
Bernard et al. (2011)
Bernard R, Goutte H, Gogny D and Younes W 2011 Microscopic and
nonadiabatic Schrödinger equation derived from the generator coordinate
method based on zero- and two-quasiparticle states Phys. Rev. C84, 044308.
https://link.aps.org/doi/10.1103/PhysRevC.84.044308
Bernard et al. (2020)
Bernard R N, Pillet N, Robledo L M and Anguiano M 2020 Description of
the asymmetric to symmetric fission transition in the neutron-deficient
thorium isotopes: Role of the tensor force Phys. Rev. C101, 044615.
https://link.aps.org/doi/10.1103/PhysRevC.101.044615
Bertsch (2019)
Bertsch G 2019 Reorientation in newly formed fission fragments.
arXiv:1901.00928.
https://arxiv.org/abs/1901.00928
Bertsch et al. (2015)
Bertsch G F, Loveland W, Nazarewicz W and Talou P 2015 Benchmarking
nuclear fission theory J. Phys. G42(7), 077001.
https://doi.org/10.1088/0954-3899/42/7/077001
Bertsch, Younes and Robledo (2019)
Bertsch G F, Younes W and Robledo L M 2019 Diabatic paths through the
scission point in nuclear fission Phys. Rev. C100, 024607.
https://link.aps.org/doi/10.1103/PhysRevC.100.024607
Bjørnholm et al. (1973)
Bjørnholm S, Bohr A and Mottelson B 1973 Role of symmetry on the
nuclear shape in rotational contributions to nuclear level densities Proc. Third. IAEA Symp. on Physics and Chemistry of Fission1, 367–372.
Blazkiewicz et al. (2005)
Blazkiewicz A, Oberacker V E, Umar A S and Stoitsov M 2005 Coordinate
space Hartree-Fock-Bogoliubov calculations for the zirconium isotope chain
up to the two-neutron drip line Phys. Rev. C71, 054321.
https://link.aps.org/doi/10.1103/PhysRevC.71.054321
Bonneau et al. (2007)
Bonneau L, Quentin P and Mikhailov I N 2007 Scission configurations
and their implication in fission-fragment angular momenta Phys. Rev. C75(6), 064313.
https://link.aps.org/doi/10.1103/PhysRevC.75.064313
Borunov et al. (2008)
Borunov M, Nadtochy P and Adeev G 2008 Nuclear scission and
fission-fragment kinetic-energy distribution: Study within
three-dimensional Langevin dynamics Nuclear Physics A799(1), 56 – 83.
http://www.sciencedirect.com/science/article/pii/S0375947407007828
Brack et al. (1972)
Brack M, Damgaard J, Jensen A S, Pauli H C, Strutinsky V M and Wong
C Y 1972 Funny Hills: The shell-correction approach to nuclear shell
effects and its applications to the fission process Rev. Mod. Phys.44, 320–405.
https://link.aps.org/doi/10.1103/RevModPhys.44.320
Brodziński et al. (2018)
Brodziński W, Jachimowicz P, Kowal M and Skalski J 2018 Fission
of SHN and Its Hindrance: Odd Nuclei and Isomers Acta Phys. Polon.
B49, 621–630.
https://www.actaphys.uj.edu.pl/R/49/3/621
Bulgac, Jin, Roche, Schunck and Stetcu (2019)
Bulgac A, Jin S, Roche K J, Schunck N and Stetcu I 2019 Fission
dynamics of from saddle to scission and beyond Phys. Rev. C100, 034615.
https://link.aps.org/doi/10.1103/PhysRevC.100.034615
Burke et al. (2005)
Burke K, Werschnik J and Gross E K U 2005 Time-dependent density
functional theory: Past, present, and future The Journal of Chemical
Physics123(6), 062206.
https://doi.org/10.1063/1.1904586
Capote et al. (2009)
Capote R, Herman M, Obložinský P, Young P G, Goriely S, Belgya T,
Ignatyuk A V, Koning A J, Hilaire S, Plujko V A, Avrigeanu M, Bersillon O,
Chadwick M B, Fukahori T, Ge Z, Han Y, Kailas S, Kopecky J, Maslov V M, Reffo
G, Sin M, Soukhovitskii E S and Talou P 2009 RIPL – reference
input parameter library for calculation of nuclear reactions and nuclear data
evaluations Nucl. Data Sheets110(12), 3107 – 3214.
Special Issue on Nuclear Reaction Data.
http://www.sciencedirect.com/science/article/pii/S0090375209000994
Carlsson et al. (2008)
Carlsson B G, Dobaczewski J and Kortelainen M 2008 Local nuclear
energy density functional at next-to-next-to-next-to-leading order Phys.
Rev. C78, 044326.
https://link.aps.org/doi/10.1103/PhysRevC.78.044326
Cusson et al. (1985)
Cusson R Y, Reinhard P G, Strayer M R, Maruhn J A and Greiner W 1985
Density as a constraint and the separation of internal excitation energy in
TDHF Z. Phys. A320, 475–482.
https://doi.org/10.1007/BF01415725
Davesne et al. (2018)
Davesne D, Navarro J, Meyer J, Bennaceur K and Pastore A 2018
Two-body contributions to the effective mass in nuclear effective
interactions Phys. Rev. C97, 044304.
https://link.aps.org/doi/10.1103/PhysRevC.97.044304
Davesne et al. (2013)
Davesne D, Pastore A and Navarro J 2013 Skyrme effective
pseudopotential up to the next-to-next-to-leading order J. Phys. G40(9), 095104.
http://stacks.iop.org/0954-3899/40/i=9/a=095104
Diebel et al. (1981)
Diebel M, Albrecht K and Hasse R W 1981 Microscopic calculations of
fission barriers and critical angular momenta for excited heavy nuclear
systems Nucl. Phys. A355(1), 66 – 92.
http://www.sciencedirect.com/science/article/pii/0375947481901329
Dobaczewski (2019)
Dobaczewski J 2019 Density functional theory for nuclear fission - a proposal.
arXiv:1910.03924.
https://arxiv.org/abs/1910.03924
Dobaczewski et al. (2012)
Dobaczewski J, Bennaceur K and Raimondi F 2012 Effective theory for
low-energy nuclear energy density functionals J. Phys. G39, 125103.
https://doi.org/10.1088/0954-3899/39/12/125103
Dobaczewski et al. (2014)
Dobaczewski J, Nazarewicz W and Reinhard P G 2014 Error estimates of
theoretical models: a guide J. Phys. G41, 074001.
https://doi.org/10.1088/0954-3899/41/7/074001
Dobaczewski et al. (1996)
Dobaczewski J, Nazarewicz W, Werner T R, Berger J F, Chinn C R and Dechargé J 1996 Mean-field description of ground-state properties of
drip-line nuclei: Pairing and continuum effects Phys. Rev. C53, 2809–2840.
https://link.aps.org/doi/10.1103/PhysRevC.53.2809
Dobaczewski et al. (2009)
Dobaczewski J, Satuła W, Carlsson B, Engel J, Olbratowski P, Powałowski
P, Sadziak M, Sarich J, Schunck N, Staszczak A, Stoitsov M, Zalewski M
and Zduńczuk H 2009 Solution of the
Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed
harmonic-oscillator basis.: (VI) hfodd (v2.40h): A new version of
the program Comput. Phys. Commun.180(11), 2361 – 2391.
http://www.sciencedirect.com/science/article/pii/S0010465509002598
Dobaczewski and Skalski (1981)
Dobaczewski J and Skalski J 1981 The quadrupole vibrational inertial
function in the adiabatic time-dependent Hartree-Fock-Bogolyubov
approximation Nucl. Phys. A369(1), 123 – 140.
http://www.sciencedirect.com/science/article/pii/0375947481900105
Dobaczewski et al. (2007)
Dobaczewski J, Stoitsov M V, Nazarewicz W and Reinhard P G 2007
Particle-number projection and the density functional theory Phys. Rev.
C76, 054315.
http://link.aps.org/doi/10.1103/PhysRevC.76.054315
Dubray et al. (2008)
Dubray N, Goutte H and Delaroche J P 2008 Structure properties of
and fission fragments:
Mean-field analysis with the Gogny force Phys. Rev. C77, 014310.
https://link.aps.org/doi/10.1103/PhysRevC.77.014310
Dubray and Regnier (2012)
Dubray N and Regnier D 2012 Numerical search of discontinuities in
self-consistent potential energy surfaces Comput. Phys. Comm.183(10), 2035.
https://doi.org/10.1016/j.cpc.2012.05.001
Duguet et al. (2009)
Duguet T, Bender M, Bennaceur K, Lacroix D and Lesinski T 2009
Particle-number restoration within the energy density functional formalism:
Nonviability of terms depending on noninteger powers of the density matrices
Phys. Rev. C79, 044320.
https://link.aps.org/doi/10.1103/PhysRevC.79.044320
Dyhdalo et al. (2017)
Dyhdalo A, Bogner S K and Furnstahl R J 2017 Applying the density
matrix expansion with coordinate-space chiral interactions Phys. Rev. C95, 054314.
https://link.aps.org/doi/10.1103/PhysRevC.95.054314
Egido et al. (2000)
Egido J L, Robledo L M and Martin V 2000 Behavior of shell effects
with the excitation energy in atomic nuclei Phys. Rev. Lett.85, 26–29.
https://link.aps.org/doi/10.1103/PhysRevLett.85.26
Erler, Birge, Kortelainen, Nazarewicz, Olsen, Perhac and Stoitsov (2012)
Erler J, Birge N, Kortelainen M, Nazarewicz W, Olsen E, Perhac A M and Stoitsov M 2012 The limits of the nuclear landscape Nature486(7404), 509.
https://doi.org/10.1038/nature11188
Erler, Langanke, Loens, Martínez-Pinedo and Reinhard (2012)
Erler J, Langanke K, Loens H P, Martínez-Pinedo G and Reinhard
P G 2012 Fission properties for -process nuclei Phys. Rev. C85, 025802.
https://link.aps.org/doi/10.1103/PhysRevC.85.025802
Eslamizadeh and Raanaei (2018)
Eslamizadeh H and Raanaei H 2018 Dynamical study of fission process
at low excitation energies in the framework of the four-dimensional
Langevin equations Physics Letters B783, 163 – 168.
http://www.sciencedirect.com/science/article/pii/S0370269318305069
Frégeau et al. (2012)
Frégeau M O, Jacquet D, Morjean M, Bonnet E, Chbihi A, Frankland J D, Rivet
M F, Tassan-Got L, Dechery F, Drouart A, Nalpas L, Ledoux X, Parlog M,
Ciortea C, Dumitriu D, Fluerasu D, Gugiu M, Gramegna F, Kravchuk V L, Marchi
T, Fabris D, Corsi A and Barlini S 2012 X-ray fluorescence from the
element with atomic number Phys. Rev. Lett.108, 122701.
https://link.aps.org/doi/10.1103/PhysRevLett.108.122701
Gebremariam et al. (2011)
Gebremariam B, Bogner S and Duguet T 2011 Microscopically-constrained
Fock energy density functionals from chiral effective field theory. I.
Two-nucleon interactions Nucl. Phys. A851(1), 17 – 43.
http://www.sciencedirect.com/science/article/pii/S0375947410007591
Gebremariam et al. (2010)
Gebremariam B, Duguet T and Bogner S K 2010 Improved density matrix
expansion for spin-unsaturated nuclei Phys. Rev. C82, 014305.
https://link.aps.org/doi/10.1103/PhysRevC.82.014305
Giannoni and Quentin (1980)
Giannoni M J and Quentin P 1980 Mass parameters in the adiabatic
time-dependent Hartree-Fock approximation. II. Results for the isoscalar
quadrupole mode Phys. Rev. C21, 2076–2093.
https://link.aps.org/doi/10.1103/PhysRevC.21.2076
Giuliani et al. (2018)
Giuliani S A, Martínez-Pinedo G and Robledo L M 2018 Fission
properties of superheavy nuclei for -process calculations Phys. Rev.
C97, 034323.
https://link.aps.org/doi/10.1103/PhysRevC.97.034323
Giuliani et al. (2019)
Giuliani S A, Martínez-Pinedo G, Wu M R and Robledo L M 2019
Fission and the r-process nucleosynthesis of translead nuclei.
arXiv:1904.03733.
http://arxiv.org/abs/1904.03733
Giuliani and Robledo (2018)
Giuliani S A and Robledo L M 2018 Non-perturbative collective
inertias for fission: A comparative study Phys. Lett. B787, 134–140.
https://doi.org/10.1016/j.physletb.2018.10.045
Giuliani et al. (2014)
Giuliani S A, Robledo L M and Rodríguez-Guzmán R 2014 Dynamic
versus static fission paths with realistic interactions Phys. Rev. C90, 054311.
https://link.aps.org/doi/10.1103/PhysRevC.90.054311
Godbey et al. (2020)
Godbey K, Simenel C and Umar A S 2020 Microscopic predictions for the
production of neutron-rich nuclei in the reaction
Phys. Rev. C101, 034602.
https://link.aps.org/10.1103/PhysRevC.101.034602
Goddard et al. (2016)
Goddard P M, Stevenson P D and Rios A 2016 Fission dynamics within
time–dependent Hartree–Fock. II. Boost-induced fission Phys.
Rev. C93, 014620.
http://dx.doi.org/10.1103/PhysRevC.93.014620
Goddard et al. (2015)
Goddard P, Stevenson P and Rios A 2015 Fission dynamics within
time-dependent Hartree-Fock: Deformation-induced fission Phys. Rev. C92, 054610.
https://link.aps.org/doi/10.1103/PhysRevC.92.054610
Goeke and Reinhard (1980)
Goeke K and Reinhard P G 1980 The generator-coordinate-method with
conjugate parameters and the unification of microscopic theories for large
amplitude collective motion Ann. Phys. (N.Y.)124(2), 249.
http://www.sciencedirect.com/science/article/pii/0003491680902109
Goeke et al. (1981)
Goeke K, Reinhard P G and Rowe D 1981 A study of collective paths in
the time-dependent hartree-fock approach to large amplitude collective
nuclear motion Nucl. Phys. A359(2), 408.
http://www.sciencedirect.com/science/article/pii/0375947481902463
Gonzalez-Boquera et al. (2020)
Gonzalez-Boquera C, Centelles M, Viñas X and Robledo L 2020
Comment on the paper Eur. Phys. J. A (2019) 55:150.
arXiv:2004.01701.
https://arxiv.org/abs/2004.01701
Goriely et al. (2007)
Goriely S, Samyn M and Pearson J 2007 Further explorations of
Skyrme-Hartree-Fock-Bogoliubov mass formulas. VII. Simultaneous fits to
masses and fission barriers Phys. Rev. C75(6), 064312.
https://link.aps.org/doi/10.1103/PhysRevC.75.064312
Goutte et al. (2005)
Goutte H, Berger J F, Casoli P and Gogny D 2005 Microscopic approach
of fission dynamics applied to fragment kinetic energy and mass distributions
in Phys. Rev. C71, 024316.
https://link.aps.org/doi/10.1103/PhysRevC.71.024316
Hashimoto (2013)
Hashimoto Y 2013 Time-dependent Hartree-Fock-Bogoliubov calculations using a
Lagrange mesh with the Gogny interaction Phys. Rev. C88, 034307.
https://link.aps.org/doi/10.1103/PhysRevC.88.034307
Hashimoto and Scamps (2016)
Hashimoto Y and Scamps G 2016 Gauge angle dependence in
time-dependent Hartree-Fock-Bogoliubov calculations of
head-on collisions with the Gogny
interaction Phys. Rev. C94, 014610.
https://link.aps.org/doi/10.1103/PhysRevC.94.014610
Higdon et al. (2015)
Higdon D, McDonnell J D, Schunck N, Sarich J and Wild S M 2015 A
Bayesian approach for parameter estimation and prediction using a
computationally intensive model J. Phys. G42(3), 034009.
https://doi.org/10.1088/0954-3899/42/3/034009
Hilaire et al. (2012)
Hilaire S, Girod M, Goriely S and Koning A 2012
Temperature-dependent combinatorial level densities with the D1M Gogny
force Phys. Rev. C86(6), 064317.
https://link.aps.org/doi/10.1103/PhysRevC.86.064317
Hill and Wheeler (1953)
Hill D L and Wheeler J A 1953 Nuclear constitution and the
interpretation of fission phenomena Phys. Rev.89, 1102–1145.
https://link.aps.org/doi/10.1103/PhysRev.89.1102
Hinohara et al. (2007)
Hinohara N, Nakatsukasa T, Matsuo M and Matsuyanagi K 2007
Gauge-Invariant Formulation of the Adiabatic Self-Consistent Collective
Coordinate Method Progress of Theoretical Physics117(3), 451–478.
https://doi.org/10.1143/PTP.117.451
Hinohara et al. (2008)
Hinohara N, Nakatsukasa T, Matsuo M and Matsuyanagi K 2008
Microscopic Derivation of Collective Hamiltonian by Means of the
Adiabatic Self-Consistent Collective Coordinate Method: Shape Mixing in
Low-Lying States of Se and Kr Progress of Theoretical
Physics119(1), 59–101.
https://doi.org/10.1143/PTP.119.59
Ishizuka et al. (2017)
Ishizuka C, Usang M D, Ivanyuk F A, Maruhn J A, Nishio K and Chiba S
2017 Four-dimensional Langevin approach to low-energy nuclear fission of
U Phys. Rev. C96(6), 064616.
https://link.aps.org/doi/10.1103/PhysRevC.96.064616
Jin et al. (2017)
Jin S, Bulgac A, Roche K and Wlazłowski G 2017 Coordinate-space
solver for superfluid many-fermion systems with the shifted
conjugate-orthogonal conjugate-gradient method Phys. Rev. C95, 044302.
https://link.aps.org/doi/10.1103/PhysRevC.95.044302
Jodon et al. (2016)
Jodon R, Bender M, Bennaceur K and Meyer J 2016 Constraining the
surface properties of effective Skyrme interactions Phys. Rev. C94, 024335.
https://link.aps.org/doi/10.1103/PhysRevC.94.024335
Karpov et al. (2001)
Karpov A V, Nadtochy P N, Vanin D V and Adeev G D 2001
Three-dimensional Langevin calculations of fission fragment mass-energy
distribution from excited compound nuclei Phys. Rev. C63, 054610.
https://link.aps.org/doi/10.1103/PhysRevC.63.054610
Kawano et al. (2015)
Kawano T, Talou P and Weidenmüller H A 2015 Random-matrix
approach to the statistical compound nuclear reaction at low energies using
the monte carlo technique Phys. Rev. C92, 044617.
https://link.aps.org/doi/10.1103/PhysRevC.92.044617
Kim et al. (1997)
Kim K H, Otsuka T and Bonche P 1997 Three-dimensional TDHF
calculations for reactions of unstable nuclei Journal of Physics G:
Nuclear and Particle Physics23(10), 1267–1273.
https://doi.org/10.1088/0954-3899/23/10/014
Kortelainen et al. (2010)
Kortelainen M, Lesinski T, Moré J, Nazarewicz W, Sarich J, Schunck N,
Stoitsov M V and Wild S 2010 Nuclear energy density optimization
Phys. Rev. C82, 024313.
https://link.aps.org/doi/10.1103/PhysRevC.82.024313
Kortelainen et al. (2014)
Kortelainen M, McDonnell J, Nazarewicz W, Olsen E, Reinhard P G, Sarich J,
Schunck N, Wild S M, Davesne D, Erler J and Pastore A 2014 Nuclear
energy density optimization: Shell structure Phys. Rev. C89, 054314.
https://link.aps.org/doi/10.1103/PhysRevC.89.054314
Kortelainen et al. (2012)
Kortelainen M, McDonnell J, Nazarewicz W, Reinhard P G, Sarich J, Schunck N,
Stoitsov M V and Wild S M 2012 Nuclear energy density optimization:
Large deformations Phys. Rev. C85, 024304.
https://link.aps.org/doi/10.1103/PhysRevC.85.024304
Lackner et al. (2015)
Lackner F, Březinová I, Sato T, Ishikawa K L
and Burgdörfer J 2015 Propagating two-particle reduced density
matrices without wave functions Phys. Rev. A91, 023412.
https://link.aps.org/doi/10.1103/PhysRevA.91.023412
Lackner et al. (2017)
Lackner F, Březinová I, Sato T, Ishikawa K L
and Burgdörfer J 2017 High-harmonic spectra from time-dependent
two-particle reduced-density-matrix theory Phys. Rev. A95, 033414.
https://link.aps.org/doi/10.1103/PhysRevA.95.033414
Lacombe et al. (2016)
Lacombe L, Suraud E, Reinhard P G and Dinh P 2016 Stochastic TDHF
in an exactly solvable model Ann. Phys. (N. Y.)373, 216.
https://doi.org/10.1016/j.aop.2016.07.008
Lacroix et al. (2009)
Lacroix D, Duguet T and Bender M 2009 Configuration mixing within the
energy density functional formalism: Removing spurious contributions from
nondiagonal energy kernels Phys. Rev. C79, 044318.
http://link.aps.org/doi/10.1103/PhysRevC.79.044318
Lasseri et al. (2020)
Lasseri R D, Regnier D, Ebran J P and Penon A 2020 Taming nuclear
complexity with a committee of multilayer neural networks Phys. Rev.
Lett.124, 162502.
https://link.aps.org/doi/10.1103/PhysRevLett.124.162502
Lechaftois et al. (2015)
Lechaftois F, Deloncle I and Péru S 2015 Introduction of a
valence space in quasiparticle random-phase approximation: Impact on
vibrational mass parameters and spectroscopic properties Phys. Rev. C92(3), 034315.
https://link.aps.org/doi/10.1103/PhysRevC.92.034315
Lemaître et al. (2018)
Lemaître J F, Goriely S, Hilaire S and Dubray N 2018 Microscopic
description of the fission path with the Gogny interaction Phys. Rev.
C98, 024623.
https://link.aps.org/doi/10.1103/PhysRevC.98.024623
Lemaître et al. (2019)
Lemaître J F, Goriely S, Hilaire S and Sida J L 2019 Fully
microscopic scission-point model to predict fission fragment observables Phys. Rev. C99, 034612.
https://link.aps.org/doi/10.1103/PhysRevC.99.034612
Lemaître et al. (2015)
Lemaître J F, Panebianco S, Sida J L, Hilaire S and Heinrich S
2015 New statistical scission-point model to predict fission fragment
observables Phys. Rev. C92(3), 034617.
https://link.aps.org/doi/10.1103/PhysRevC.92.034617
Levit et al. (1980)
Levit S, Negele J W and Paltiel Z 1980 Barrier penetration and
spontaneous fission in the time-dependent mean-field approximation Phys.
Rev. C22, 1979–1995.
https://link.aps.org/doi/10.1103/PhysRevC.22.1979
Łojewski and Staszczak (1999)
Łojewski Z and Staszczak A 1999 Role of pairing degrees of freedom
and higher multipolarity deformations in spontaneous fission process Nucl. Phys. A657(2), 134 – 157.
http://www.sciencedirect.com/science/article/pii/S0375947499003280
Lu et al. (2014)
Lu B N, Zhao J, Zhao E G and Zhou S G 2014
Multidimensionally-constrained relativistic mean-field models and
potential-energy surfaces of actinide nuclei Phys. Rev. C89, 014323.
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.89.014323
Martini et al. (2019)
Martini M, Pace A D and Bennaceur K 2019 Spurious finite-size
instabilities with Gogny-type interactions Eur. Phys. J. A55, 150.
https://doi.org/10.1140/epja/i2019-12838-7
Maruhn et al. (2014)
Maruhn J A, Reinhard P G, Stevenson P D and Umar A S 2014 The
TDHF code Sky3D Comput. Phys. Comm.185(7), 2195.
https://doi.org/10.1016/j.cpc.2014.04.008
Marumori et al. (1980)
Marumori T, Maskawa T, Sakata F and Kuriyama A 1980 Self-Consistent
Collective-Coordinate Method for the Large-Amplitude Nuclear Collective
Motion Prog. Theor. Phys.64(4), 1294–1314.
https://doi.org/10.1143/PTP.64.1294
Matev and Slavov (1991)
Matev M T and Slavov B 1991 Quasidynamic propagation in diabatic
landscapes for low energy nuclear fission Z. Physik A338(4), 431–434.
https://doi.org/10.1007/BF01295771
Matsuo et al. (2000)
Matsuo M, Nakatsukasa T and Matsuyanagi K 2000 Adiabatic
Selfconsistent Collective Coordinate Method for Large Amplitude Collective
Motion in Nuclei with Pairing Correlations Prog. Theor. Phys.103(5), 959–979.
https://doi.org/10.1143/PTP.103.959
McDonnell et al. (2015)
McDonnell J D, Schunck N, Higdon D, Sarich J, Wild S M and Nazarewicz
W 2015 Uncertainty quantification for nuclear density functional
theory and information content of new measurements Phys. Rev.
Lett.114(12), 122501.
https://link.aps.org/doi/10.1103/PhysRevLett.114.122501
Miyamoto et al. (2019)
Miyamoto Y, Aritomo Y, Tanaka S, Hirose K and Nishio K 2019 Origin of
the dramatic change of fission mode in fermium isotopes investigated using
Langevin equations Phys. Rev. C99, 051601.
https://link.aps.org/doi/10.1103/PhysRevC.99.051601
Möller and Ichikawa (2015)
Möller P and Ichikawa T 2015 A method to calculate
fission-fragment yields Y(Z,N) versus proton and neutron number in the
Brownian shape-motion model Eur. Phys. J. A51, 173.
https://doi.org/10.1140/epja/i2015-15173-1
Möller et al. (2001)
Möller P, Madland D G, Sierk A J and Iwamoto A 2001 Nuclear fission
modes and fragment mass asymmetries in a five-dimensional deformation space
Nature409, 785–790.
https://doi.org/10.1038/35057204
Möller et al. (2014)
Möller P, Randrup J, Iwamoto A and Ichikawa T 2014 Fission-fragment
charge yields: Variation of odd-even staggering with element number,
energy, and charge asymmetry Phys. Rev. C90, 014601.
https://link.aps.org/doi/10.1103/PhysRevC.90.014601
Möller and Schmitt (2017)
Möller P and Schmitt C 2017 Evolution of uranium fission-fragment
charge yields with neutron number Eur. Phys. J. A53, 7.
https://doi.org/10.1140/epja/i2017-12188-6
Möller et al. (2009)
Möller P, Sierk A J, Ichikawa T, Iwamoto A, Bengtsson R, Uhrenholt H
and Åberg S 2009 Heavy-element fission barriers Phys. Rev.
C79, 064304.
https://link.aps.org/doi/10.1103/PhysRevC.79.064304
Moretto and Babinet (1974)
Moretto L G and Babinet R P 1974 Large superfluidity enhancement in
the penetration of the fission barrier Phys. Lett. B49, 147.
https://doi.org/10.1016/0370-2693(74)90494-8
Müller et al. (1984)
Müller R, Naqvi A A, Käppeler F and Dickmann F 1984 Fragment
velocities, energies, and masses from fast neutron induced fission of
U Phys. Rev. C29, 885.
https://link.aps.org/doi/10.1103/PhysRevC.29.885
Mumpower et al. (2018)
Mumpower M R, Kawano T, Sprouse T M, Vassh N, Holmbeck E M, Surman R
and Møller P 2018 -delayed fission in r-process
nucleosynthesis The Astrophysical Journal869(1), 14.
https://doi.org/10.3847/1538-4357/aaeaca
Mustonen and Engel (2016)
Mustonen M T and Engel J 2016 Global description of -decay in
even-even nuclei with the axially-deformed Skyrme finite-amplitude method
Phys. Rev. C93, 014304.
https://link.aps.org/doi/10.1103/PhysRevC.93.014304
Mustonen et al. (2014)
Mustonen M T, Shafer T, Zenginerler Z and Engel J 2014
Finite-amplitude method for charge-changing transitions in axially deformed
nuclei Phys. Rev. C90(2), 024308.
https://link.aps.org/doi/10.1103/PhysRevC.90.024308
Nadtochy et al. (2012)
Nadtochy P N, Ryabov E G, Gegechkori A E, Anischenko Y A and Adeev G D
2012 Four-dimensional Langevin dynamics of heavy-ion-induced fission Phys. Rev. C85, 064619.
https://link.aps.org/doi/10.1103/PhysRevC.85.064619
Nakatsukasa and Walet (1998)
Nakatsukasa T and Walet N R 1998 Diabatic and adiabatic collective
motion in a model pairing system Phys. Rev. C57, 1192–1203.
https://link.aps.org/doi/10.1103/PhysRevC.57.1192
Naqvi et al. (1986)
Naqvi A A, Käppeler F, Dickmann F and Müller R 1986 Fission
fragment properties in fast-neutron-induced fission of Np Phys. Rev. C34, 218–225.
https://link.aps.org/doi/10.1103/PhysRevC.34.218
Navarro Pérez et al. (2018)
Navarro Pérez R, Schunck N, Dyhdalo A, Furnstahl R J and Bogner S K
2018 Microscopically based energy density functionals for nuclei using the
density matrix expansion. II. Full optimization and validation Phys.
Rev. C97, 054304.
https://link.aps.org/doi/10.1103/PhysRevC.97.054304
Nazarewicz (2001)
Nazarewicz W 2001 in J. M Arias and M Lozano, eds, ‘An Advanced
Course in Modern Nuclear Physics’ Springer Berlin Heidelberg Berlin,
Heidelberg pp. 102–140.
https://doi.org/10.1007/3-540-44620-6_4
Neufcourt et al. (2020)
Neufcourt L, Cao Y, Giuliani S A, Nazarewicz W, Olsen E and Tarasov
O B 2020 Quantified limits of the nuclear landscape Phys. Rev. C101, 044307.
https://link.aps.org/doi/10.1103/PhysRevC.101.044307
Neufcourt et al. (2019)
Neufcourt L, Cao Y, Nazarewicz W, Olsen E and Viens F 2019 Neutron
dripline in the ca region from bayesian model averaging Phys. Rev.
Lett.102, 062502.
https://link.aps.org/doi/10.1103/PhysRevLett.122.062502
Neufcourt et al. (2018)
Neufcourt L, Cao Y, Nazarewicz W and Viens F 2018 Bayesian approach
to model-based extrapolation of nuclear observables Phys. Rev. C98, 034318.
https://link.aps.org/doi/10.1103/PhysRevC.98.034318
Nikolov et al. (2011)
Nikolov N, Schunck N, Nazarewicz W, Bender M and Pei J 2011 Surface
symmetry energy of nuclear energy density functionals Phys. Rev. C83(3), 034305.
https://link.aps.org/doi/10.1103/PhysRevC.83.034305
Nikšić et al. (2015)
Nikšić T, Paar N, Reinhard P G and Vretenar D 2015 Optimizing
relativistic energy density functionals: covariance analysis J. Phys. G42(3), 034008.
http://stacks.iop.org/0954-3899/42/i=3/a=034008
Nikšić et al. (2008)
Nikšić T, Vretenar D and Ring P 2008 Relativistic nuclear
energy density functionals: Adjusting parameters to binding energies Phys. Rev. C78, 034318.
Pal and Mukhopadhyay (1998)
Pal S and Mukhopadhyay T 1998 Chaos modified wall formula damping of
the surface motion of a cavity undergoing fissionlike shape evolutions Phys. Rev. C57, 210–216.
https://link.aps.org/doi/10.1103/PhysRevC.57.210
Parrish et al. (2013)
Parrish R M, Hohenstein E G, Schunck N F, Sherrill C D and Martínez T J 2013 Exact tensor hypercontraction: A universal
technique for the resolution of matrix elements of local finite-range
-body potentials in many-body quantum problems Phys. Rev. Lett.111, 132505.
https://link.aps.org/doi/10.1103/PhysRevLett.111.132505
Paşca et al. (2019)
Paşca H, Andreev A V, Adamian G G and Antonenko N V 2019 Change
of the shape of mass and charge distributions in fission of Cf isotopes
with excitation energy Phys. Rev. C99, 064611.
https://link.aps.org/doi/10.1103/PhysRevC.99.064611
Pei et al. (2014)
Pei J C, Fann G I, Harrison R J, Nazarewicz W, Shi Y and Thornton S
2014 Adaptive multi-resolution 3D Hartree-Fock-Bogoliubov solver for
nuclear structure Phys. Rev. C90(2), 024317.
https://link.aps.org/doi/10.1103/PhysRevC.90.024317
Pei et al. (2008)
Pei J, Stoitsov M, Fann G, Nazarewicz W, Schunck N and Xu F 2008
Deformed coordinate-space Hartree-Fock-Bogoliubov approach to weakly
bound nuclei and large deformations Phys. Rev. C78(6), 064306.
https://link.aps.org/doi/10.1103/PhysRevC.78.064306
Perez et al. (2017)
Perez R N, Schunck N, Lasseri R D, Zhang C and Sarich J 2017 Axially
deformed solution of the Skyrme–Hartree–Fock–Bogolyubov
equations using the transformed harmonic oscillator basis (iii) hfbtho
(v3.00): A new version of the program Computer Physics Communications220, 363 – 375.
http://www.sciencedirect.com/science/article/pii/S0010465517302047
Randrup and Möller (2011)
Randrup J and Möller P 2011 Brownian shape motion on
five-dimensional potential-energy surfaces: Nuclear fission-fragment mass
distributions Phys. Rev. Lett.106, 132503.
https://link.aps.org/doi/10.1103/PhysRevLett.106.132503
Randrup and Möller (2013)
Randrup J and Möller P 2013 Energy dependence of fission-fragment
mass distributions from strongly damped shape evolution Phys. Rev. C88(6), 064606.
https://link.aps.org/doi/10.1103/PhysRevC.88.064606
Randrup et al. (2011)
Randrup J, Möller P and Sierk A J 2011 Fission-fragment mass
distributions from strongly damped shape evolution Phys. Rev. C84, 034613.
https://link.aps.org/doi/10.1103/PhysRevC.84.034613
Randrup and Swiatecki (1984)
Randrup J and Swiatecki W J 1984 Dissipative resistance against
changes in the mass asymmetry degree of freedom in nuclear dynamics: The
completed wall-and-window formula Nucl. Phys. A429(1), 105.
https://doi.org/10.1016/0375-9474(84)90151-9
Regnier et al. (2019)
Regnier D, Dubray N and Schunck N 2019 From asymmetric to symmetric
fission in the fermium isotopes within the time-dependent
generator-coordinate-method formalism Phys. Rev. C99, 024611.
https://link.aps.org/doi/10.1103/PhysRevC.99.024611
Regnier et al. (2016)
Regnier D, Dubray N, Schunck N and Verrière M 2016 Fission fragment
charge and mass distributions in in the adiabatic
nuclear energy density functional theory Phys. Rev. C93, 054611.
https://link.aps.org/doi/10.1103/PhysRevC.93.054611
Regnier and Lacroix (2019)
Regnier D and Lacroix D 2019 Microscopic description of pair transfer
between two superfluid Fermi systems. II. Quantum mixing of
time-dependent Hartree-Fock-Bogolyubov trajectories Phys. Rev. C99, 064615.
https://link.aps.org/doi/10.1103/PhysRevC.99.064615
Reinhard (2018)
Reinhard P G 2018 Nuclear density-functional theory and fission of super-heavy
elements Eur. Phys. J A54, 13.
https://doi.org/10.1140/epja/i2018-12421-x
Reinhard and Nazarewicz (2010)
Reinhard P G and Nazarewicz W 2010 Information content of a new
observable: The case of the nuclear neutron skin Phys. Rev. C81, 051303.
https://link.aps.org/doi/10.1103/PhysRevC.81.051303
Reinhard et al. (2020)
Reinhard P G, Schuetrumpf B and Maruhn J A 2020 The Axial
Hartree-Fock + BCS Code SkyAx submitted to Comput. Phys. Commun. .
Reinhard and Suraud (1992)
Reinhard P G and Suraud S 1992 Stochastic TDHF and the
Boltzman-Langevin equation Ann. Phys. (N.Y.)216, 98.
https://doi.org/10.1016/0003-4916(52)90043-2
Reinhardt (1979)
Reinhardt H 1979 Path-integral approach to time-dependent self-consistent
field theories J. Phys. G5, L91–L94.
Robledo (2010b)
Robledo L M 2010b Remarks on the use of projected densities in the
density-dependent part of Skyrme or Gogny functionals Journal of
Physics G: Nuclear and Particle Physics37(6), 064020.
http://stacks.iop.org/0954-3899/37/i=6/a=064020
Robledo and Bertsch (2011)
Robledo L M and Bertsch G F 2011 Application of the gradient method
to Hartree-Fock-Bogoliubov theory Phys. Rev. C84, 014312.
https://link.aps.org/doi/10.1103/PhysRevC.84.014312
Robledo et al. (2018)
Robledo L M, Rodríguez T R and Rodríguez-Guzmán
R R 2018 Mean field and beyond description of nuclear structure with the
Gogny force: a review J. Phys. G46(1), 013001.
https://doi.org/10.1088/1361-6471/aadebd
Rodríguez-Guzmán et al. (2020)
Rodríguez-Guzmán R, Humadi Y M and Robledo L M 2020
Microscopic description of fission in superheavy nuclei with the
parametrization D1M of the Gogny energy density functional Eur.
Phys. J. A56, 43.
https://doi.org/10.1140/epja/s10050-020-00051-w
Rodriguez-Guzmán and Robledo (2017)
Rodriguez-Guzmán R and Robledo L 2017 Microscopic description of
fission in odd-mass uranium and plutonium nuclei with the Gogny energy
density functional Eur. Phys. J. A53, 245.
http://dx.doi.org/10.1140/epja/i2017-12444-9
Rohoziński
et al. (2010)
Rohoziński S G, Dobaczewski J and Nazarewicz W 2010 Self-consistent symmetries in the proton-neutron
Hartree-Fock-Bogoliubov approach Phys. Rev. C81, 014313.
https://link.aps.org/doi/10.1103/PhysRevC.81.014313
Ryssens (2016)
Ryssens W 2016 Symmetry breaking in nuclear mean-field models PhD thesis
Université Libre de Bruxelles.
Ryssens et al. (2019)
Ryssens W, Bender M and Heenen P H 2019 Iterative approaches to the
self-consistent nuclear energy density functional problem. Heavy ball
dynamics and potential preconditioning Eur. Phys. J. A55, 93.
https://doi.org/10.1140/epja/i2019-12766-6
Ryssens, Heenen and Bender (2015)
Ryssens W, Heenen P H and Bender M 2015 Numerical accuracy of
mean-field calculations in coordinate space Phys. Rev. C92, 064318.
http://link.aps.org/doi/10.1103/PhysRevC.92.064318
Ryssens, Hellemans, Bender and Heenen (2015)
Ryssens W, Hellemans V, Bender M and Heenen P H 2015 Solution of
the Skyrme–HF+BCS equation on a 3D mesh, II: A new
version of the Ev8 code Comput. Phys. Comm.187, 175.
https://doi.org/10.1016/j.cpc.2014.10.001
Sadhukhan et al. (2014)
Sadhukhan J, Dobaczewski J, Nazarewicz W, Sheikh J A and Baran A 2014
Pairing-induced speedup of nuclear spontaneous fission Phys. Rev. C90, 061304.
https://link.aps.org/doi/10.1103/PhysRevC.90.061304
Sadhukhan et al. (2016)
Sadhukhan J, Nazarewicz W and Schunck N 2016 Microscopic modeling of
mass and charge distributions in the spontaneous fission of
Phys. Rev. C93, 011304.
https://link.aps.org/doi/10.1103/PhysRevC.93.011304
Sadhukhan et al. (2017)
Sadhukhan J, Zhang C, Nazarewicz W and Schunck N 2017 Formation and
distribution of fragments in the spontaneous fission of Pu Phys. Rev. C96, 061301.
https://link.aps.org/doi/10.1103/PhysRevC.96.061301
Sadoudi et al. (2013)
Sadoudi J, Duguet T, Meyer J and Bender M 2013 Skyrme functional
from a three-body pseudopotential of second order in gradients: Formalism
for central terms Phys. Rev. C88(6), 064326.
https://link.aps.org/doi/10.1103/PhysRevC.88.064326
Samyn et al. (2005)
Samyn M, Goriely S and Pearson J 2005 Further explorations of
Skyrme-Hartree-Fock-Bogoliubov mass formulas. V. Extension to fission
barriers Phys. Rev. C72(4), 044316.
Scamps and Hashimoto (2017)
Scamps G and Hashimoto Y 2017 Transfer probabilities for the
reactions O+O in terms of multiple time-dependent
Hartree-Fock-Bogoliubov trajectories Phys. Rev. C96, 031602.
https://link.aps.org/doi/10.1103/PhysRevC.96.031602
Scamps and Lacroix (2013)
Scamps G and Lacroix D 2013 Effect of pairing on one- and two-nucleon
transfer below the coulomb barrier: A time-dependent microscopic
description Phys. Rev. C87, 014605.
https://link.aps.org/doi/10.1103/PhysRevC.87.014605
Scamps and Simenel (2018)
Scamps G and Simenel C 2018 Impact of pear-shaped fission fragments
on mass-asymmetric fission in actinides Nature564(7736), 382–385.
http://dx.doi.org/10.1038/s41586-018-0780-0
Scamps and Simenel (2019)
Scamps G and Simenel C 2019 Effect of shell structure on the fission
of sub–lead nuclei Phys. Rev. C100, 041602.
http://dx.doi.org/10.1103/PhysRevC.100.041602
Schmidt and Jurado (2018)
Schmidt K H and Jurado B 2018 Review on the progress in nuclear
fission: experimental methods and theoretical descriptions Rep. Prog.
Phys.81(10), 106301.
https://doi.org/10.1088/1361-6633/aacfa7
Schuetrumpf et al. (2016)
Schuetrumpf B, Nazarewicz W and Reinhard P G 2016 Time-dependent
density functional theory with twist-averaged boundary conditions Phys.
Rev. C93, 054304.
https://link.aps.org/doi/10.1103/PhysRevC.93.054304
Schunck (2019)
Schunck N 2019 Energy density functional methods for atomic nuclei IOP
Expanding Physics IOP Publishing Bristol, UK.
OCLC: 1034572493.
http://dx.doi.org/10.1088/2053-2563/aae0ed
Schunck et al. (2017)
Schunck N, Dobaczewski J, Satuła W, Ba̧czyk P, Dudek J, Gao Y, Konieczka
M, Sato K, Shi Y, Wang X and Werner T 2017 Solution of the
Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed
harmonic-oscillator basis. (VIII) hfodd (v2.73y): A new version of
the program Comput. Phys. Commun.216, 145 – 174.
http://www.sciencedirect.com/science/article/pii/S0010465517300942
Schunck, Duke and Carr (2015)
Schunck N, Duke D and Carr H 2015 Description of induced nuclear
fission with Skyrme energy functionals. II. Finite temperature effects
Phys. Rev. C91, 034327.
https://link.aps.org/doi/10.1103/PhysRevC.91.034327
Schunck et al. (2014)
Schunck N, Duke D, Carr H and Knoll A 2014 Description of induced
nuclear fission with skyrme energy functionals: Static potential energy
surfaces and fission fragment properties Phys. Rev. C90, 054305.
https://link.aps.org/doi/10.1103/PhysRevC.90.054305
Schunck, McDonnell, Higdon, Sarich and Wild (2015)
Schunck N, McDonnell J D, Higdon D, Sarich J and Wild S M 2015
Uncertainty quantification and propagation in nuclear density functional
theory Eur. Phys. J. A51(12), 1.
https://doi.org/10.1140/epja/i2015-15169-9
Schunck, McDonnell, Sarich, Wild and Higdon (2015)
Schunck N, McDonnell J D, Sarich J, Wild S M and Higdon D 2015
Error analysis in nuclear density functional theory J. Phys. G42(3), 034024.
https://doi.org/10.1088/0954-3899/42/3/034024
Schunck and Robledo (2016)
Schunck N and Robledo L M 2016 Microscopic theory of nuclear fission:
a review Reports on Progress in Physics79(11), 116301.
https://doi.org/10.1088/0034-4885/79/11/116301
Schütte and Wilets (1975a)
Schütte G and Wilets L 1975a Constrained
Hartree-Bogoliubov solutions as a basis for time-dependent calculations
Phys. Rev. C12, 2100–2102.
https://link.aps.org/doi/10.1103/PhysRevC.12.2100
Schütte and Wilets (1978)
Schütte G and Wilets L 1978 Excitation during collective
deformation: How simple it is Z. Physik A286(3), 313–318.
https://doi.org/10.1007/BF01408263
Sekizawa and Yabana (2016)
Sekizawa K and Yabana K 2016 Time-dependent Hartree-Fock
calculations for multinucleon transfer and quasifission processes in the
reaction Phys. Rev. C93, 054616.
https://link.aps.org/doi/10.1103/PhysRevC.93.054616
Shafer et al. (2016)
Shafer T, Engel J, Fröhlich C, McLaughlin G C, Mumpower M and Surman
R 2016 decay of deformed -process nuclei near and
, including odd- and odd-odd nuclei, with the Skyrme
finite-amplitude method Phys. Rev. C94, 055802.
https://link.aps.org/doi/10.1103/PhysRevC.94.055802
Sheikh et al. (2009)
Sheikh J A, Nazarewicz W and Pei J C 2009 Systematic study of fission
barriers of excited superheavy nuclei Phys. Rev. C80, 011302.
https://link.aps.org/doi/10.1103/PhysRevC.80.011302
Sheikh et al. (2019)
Sheikh J, Dobaczewski J, Ring P, Robledo L and Yannouleas C 2019
Symmetry restoration in mean-field approaches.
arxiv:1901.06992.
https://arxiv.org/abs/1901.06992
Sikdar et al. (2018)
Sikdar A K, Ray A, Pandit D, Dey B, Bhattacharyya S, Bhattacharya S, Bisoi A,
De A, Paul S, Bhattacharya S and Chatterjee A 2018 Slow fission of
highly excited plutonium nuclei Phys. Rev. C98, 024615.
https://link.aps.org/doi/10.1103/PhysRevC.98.024615
Simenel (2010)
Simenel C 2010 Particle transfer reactions with the Time-Dependent
Hartree-Fock theory using a particle number projection technique Phys.
Rev. Lett.105, 192701.
https://link.aps.org/doi/10.1103/PhysRevLett.105.192701
Simenel (2011)
Simenel C 2011 Particle-number fluctuations and correlations in transfer
reactions obtained using the Balian-Vénéroni variational principle Phys. Rev. Lett.106, 112502.
https://link.aps.org/doi/10.1103/PhysRevLett.106.112502
Simenel and Umar (2018)
Simenel C and Umar A 2018 Heavy-ion collisions and fission dynamics
with the time-dependent Hartree-Fock theory and its extensions Progress in Particle and Nuclear Physics103, 19 – 66.
http://www.sciencedirect.com/science/article/pii/S0146641018300693
Singh et al. (2002)
Singh B, Zywina R and Firestone R B 2002 Table of superdeformed
nuclear bands and fission isomers: (october 2002) Nucl. Data Sheets97(2), 241.
https://doi.org/10.1006/ndsh.2002.0018
Stoitsov et al. (2010)
Stoitsov M, Kortelainen M, Bogner S K, Duguet T, Furnstahl R J, Gebremariam B
and Schunck N 2010 Microscopically based energy density functionals
for nuclei using the density matrix expansion: Implementation and
pre-optimization Phys. Rev. C82, 054307.
https://link.aps.org/doi/10.1103/PhysRevC.82.054307
Stoitsov et al. (2007)
Stoitsov M V, Dobaczewski J, Kirchner R, Nazarewicz W and Terasaki J
2007 Variation after particle-number projection for the
Hartree-Fock-Bogoliubov method with the Skyrme energy density functional
Phys. Rev. C76, 014308.
https://link.aps.org/doi/10.1103/PhysRevC.76.014308
Stoitsov et al. (2003)
Stoitsov M V, Dobaczewski J, Nazarewicz W, Pittel S and Dean D J 2003
Systematic study of deformed nuclei at the drip lines and beyond Phys.
Rev. C68(5), 054312.
https://link.aps.org/doi/10.1103/PhysRevC.68.054312
Strutinsky (1977)
Strutinsky V M 1977 Collective motion at large amplitudes and finite
velocities Z. Physik280(1), 99–106.
https://doi.org/10.1007/BF01438114
Talou et al. (2018)
Talou P, Vogt R, Randrup J, Rising M E, Pozzi S A, Verbeke J, Andrews M T,
Clarke S D, Jaffke P, Jandel M, Kawano T, Marcath M J, Meierbachtol K, Nakae
L, Rusev G, Sood A, Stetcu I and Walker C 2018 Correlated prompt
fission data in transport simulations Eur. Phys. J. A54(1), 9.
https://doi.org/10.1140/epja/i2018-12455-0
Tanimura et al. (2015)
Tanimura Y, Lacroix D and Scamps G 2015 Collective aspects deduced
from time-dependent microscopic mean-field with pairing: Application to the
fission process Phys. Rev. C92, 034601.
https://link.aps.org/doi/10.1103/PhysRevC.92.034601
Tao et al. (2017)
Tao H, Zhao J, Li Z P, Nikšić T and Vretenar D 2017
Microscopic study of induced fission dynamics of Th with covariant
energy density functionals Phys. Rev. C96, 024319.
https://link.aps.org/doi/10.1103/PhysRevC.96.024319
Terán et al. (2003)
Terán E, Oberacker V E and Umar A S 2003 Axially symmetric
Hartree-Fock-Bogoliubov calculations for nuclei near the drip lines Phys. Rev. C67, 064314.
https://link.aps.org/doi/10.1103/PhysRevC.67.064314
Umar and Oberacker (2006)
Umar A S and Oberacker V E 2006 Heavy-ion interaction potential
deduced from density-constrained time-dependent Hartree-Fock calculation
Phys. Rev. C74, 021601.
https://link.aps.org/doi/10.1103/PhysRevC.74.021601
Umar et al. (2016)
Umar A S, Oberacker V E and Simenel C 2016 Fusion and quasifission
dynamics in the reactions and
using a time-dependent Hartree-Fock
approach Phys. Rev. C94, 024605.
https://link.aps.org/doi/10.1103/PhysRevC.94.024605
Umar et al. (1985)
Umar A S, Strayer M R, Cusson R Y, Reinhard P G and Bromley D A 1985
Time-dependent Hartree-Fock calculations of He+C,
C+C), and HeNe
molecular formations Phys. Rev. C32, 172–183.
https://link.aps.org/doi/10.1103/PhysRevC.32.172
Usang et al. (2016)
Usang M D, Ivanyuk F A, Ishizuka C and Chiba S 2016 Effects of
microscopic transport coefficients on fission observables calculated by the
Langevin equation Phys. Rev. C94, 044602.
https://link.aps.org/doi/10.1103/PhysRevC.94.044602
Usang et al. (2017)
Usang M D, Ivanyuk F A, Ishizuka C and Chiba S 2017 Analysis of the
total kinetic energy of fission fragments with the Langevin equation Phys. Rev. C96, 064617.
https://link.aps.org/doi/10.1103/PhysRevC.96.064617
Usang et al. (2019)
Usang M, Ivanyuk F, Ishizuka C and Chiba S 2019 Correlated
transitions in TKE and mass distributions of fission fragments described by
4-D Langevin equation Sci. Rep.9(24), 1525.
https://www.nature.com/articles/s41598-018-37993-7
Vaquero et al. (2011)
Vaquero N L, Rodríguez T R and Egido J L 2011 On the impact of
large amplitude pairing fluctuations on nuclear spectra Phys. Lett. B704, 520 – 526.
https://doi.org/10.1016/j.physletb.2011.09.073
Wada et al. (1993)
Wada T, Abe Y and Carjan N 1993 One-body dissipation in agreement
with prescission neutrons and fragment kinetic energies Phys. Rev.
Lett.70, 3538–3541.
https://link.aps.org/doi/10.1103/PhysRevLett.70.3538
Wakhle et al. (2014)
Wakhle A, Simenel C, Hinde D J, Dasgupta M, Evers M, Luong D H, du Rietz R
and Williams E 2014 Interplay between Quantum Shells and
Orientation in Quasifission Phys. Rev. Lett.113, 182502.
http://dx.doi.org/10.1103/PhysRevLett.113.182502
Ward et al. (2017)
Ward D E, Carlsson B G, Døssing T, Möller P, Randrup J and Åberg S 2017 Nuclear shape evolution based on microscopic level
densities Phys. Rev. C95, 024618.
https://link.aps.org/doi/10.1103/PhysRevC.95.024618
Warda et al. (2002)
Warda M, Egido J L, Robledo L M and Pomorski K 2002 Self-consistent
calculations of fission barriers in the Fm region Phys. Rev. C66, 014310.
https://link.aps.org/doi/10.1103/PhysRevC.66.014310
Washiyama and Lacroix (2008)
Washiyama K and Lacroix D 2008 Energy dependence of the
nucleus-nucleus potential close to the coulomb barrier Phys. Rev. C78, 024610.
https://link.aps.org/doi/10.1103/PhysRevC.78.024610
Washiyama et al. (2009)
Washiyama K, Lacroix D and Ayik S 2009 One-body energy dissipation in
fusion reactions from mean-field theory Phys. Rev. C79, 024609.
https://link.aps.org/doi/10.1103/PhysRevC.79.024609
Wilhelmy et al. (1972)
Wilhelmy J B, Cheifetz E, Jared R C, Thompson S G, Bowman H R and Rasmussen J O 1972 Angular momentum of primary products formed in the
spontaneous fission of Phys. Rev. C5, 2041–2060.
https://link.aps.org/doi/10.1103/PhysRevC.5.2041
Wilkins et al. (1976)
Wilkins B D, Steinberg E P and Chasman R R 1976 Scission-point model
of nuclear fission based on deformed-shell effects Phys. Rev. C14(5), 1832–1863.
https://link.aps.org/doi/10.1103/PhysRevC.14.1832
Williams et al. (2018)
Williams E, Sekizawa K, Hinde D J, Simenel C, Dasgupta M, Carter I P, Cook K J,
Jeung D Y, McNeil S D, Palshetkar C S, Rafferty D C, Ramachandran K
and Wakhle A 2018 Exploring zeptosecond quantum equilibration
dynamics: From deep-inelastic to fusion-fission outcomes in
Ni+ reactions Phys. Rev. Lett.120, 022501.
https://link.aps.org/doi/10.1103/PhysRevLett.120.022501
Wong and Tang (1978)
Wong C Y and Tang H H K 1978 Extended Time-Dependent Hartree-Fock
Approximation with particle collisions Phys. Rev. Lett.40, 1070–1073.
https://link.aps.org/doi/10.1103/PhysRevLett.40.1070
Wong and Tang (1979)
Wong C Y and Tang H H K 1979 Dynamics of nuclear fluid. V. Extended
time-dependent Hartree-Fock approximation illuminates the approach to
thermal equilibrium Phys. Rev. C20, 1419–1452.
https://link.aps.org/doi/10.1103/PhysRevC.20.1419
Yamada and Ikeda (2012)
Yamada H S and Ikeda K S 2012 Time-reversal characteristics of
quantum normal diffusion Eur. Phys. J. B85(1), 41.
https://doi.org/10.1140/epjb/e2011-20811-8
Younes et al. (2019)
Younes W, Gogny D M and Berger J F 2019 A Microscopic Theory of
Fission Dynamics Based on the Generator Coordinate Method Lecture Notes in
Physics 950 Springer Verlag Heidelberg.
https://link.springer.com/book/10.1007/978-3-030-04424-4
Zhang et al. (2018)
Zhang Y N, Bogner S K and Furnstahl R J 2018 Incorporating
brueckner-hartree-fock correlations in energy density functionals Phys.
Rev. C98, 064306.
https://link.aps.org/doi/10.1103/PhysRevC.98.064306
Zhao et al. (2016)
Zhao J, Lu B N, Nikšić T, Vretenar D and Zhou S G 2016
Multidimensionally-constrained relativistic mean-field study of spontaneous
fission: Coupling between shape and pairing degrees of freedom Phys.
Rev. C93, 044315.
https://link.aps.org/doi/10.1103/PhysRevC.93.044315
Zhao et al. (2019)
Zhao J, Xiang J, Li Z P, Nikšić T, Vretenar D and Zhou S G
2019 Time-dependent generator-coordinate-method study of mass-asymmetric
fission of actinides Phys. Rev. C99, 054613.
https://link.aps.org/doi/10.1103/PhysRevC.99.054613