Nośniki swobodne w półprzewodnikach

Półprzewodniki

Masa elektronu Masa efektywna swobodnego

Oprócz swobodnych nośników musimy uwzględnić inne mechanizmy – np.. wkład do polaryzacji od elektronów związanych (przejścia pasmowe) zajmiemy się nimi dokładniej później, teraz zaznaczymy tylko ich istnienie...

Metale i półprzewodniki...

$$\omega_{p} = \sqrt{\frac{Ne^{2}}{\varepsilon_{opt}\varepsilon_{0}m^{*}}}$$
GaAs

Aluminium

$$\varepsilon_{opt} = 1$$

 $m_0 - 9.1 \times 10^{-31} \text{ kg}$
 $n = 18.1 \times 10^{22} \text{ cm}^{-3}$
 $\int \int h\omega_p \, \tilde{} \, 15.8 \text{ eV}$

Ultrafiolet!

$$\varepsilon_{opt} = \varepsilon_{\infty} = 10.88$$

 $m^* = 0.067 m_0$
 $n = 10^{18} \text{ cm}^{-3}$

 $h\omega_p \sim 50 \text{ meV}$

Łatwo sterować częstość plazmową wykorzystując domieszkowanie!

Silnie domieszkowane półprzewodniki

Interesujemy się sytuacją $\omega > \omega_p$

W półprzewodnikach w temperaturze pokojowej $\tau \sim 10^{-13} s$ Dla podczerwieni, np. $\lambda = 10 \, \mu m$

$$\omega = \frac{2\pi c}{\lambda} = \frac{6.28 \times 3 \times 10^8 \, m/s}{10 \times 10^{-6} \, m} = 20 \times 10^{13} \, \frac{\text{rad}}{s} \quad \square \rangle$$

Zatem możemy dokonać przybliżenia dla części rzeczywistej funkcji dielektrycznej:

Część urojona funkcji dielektrycznej:

 $\omega \tau >> 1$

$$\varepsilon_{1} = \varepsilon_{opt} \left(1 - \frac{\omega_{p}^{2} \tau^{2}}{1 + \omega^{2} \tau^{2}} \right) \approx \varepsilon_{opt} \qquad \varepsilon_{2} = \frac{\varepsilon_{opt} \omega_{p}^{2} \tau}{\omega(1 + \omega^{2} \tau^{2})} \approx \frac{\varepsilon_{opt} \omega_{p}^{2}}{\omega^{3} \tau} << \varepsilon_{1}$$

$$n = \frac{1}{\sqrt{2}} \left(\varepsilon_1 + (\varepsilon_1^2 + \varepsilon_2^2)^{1/2} \right)^{1/2} \implies n = \sqrt{\varepsilon_{opt}}$$

$$\kappa = \frac{1}{\sqrt{2}} \left(-\varepsilon_1 + (\varepsilon_1^2 + \varepsilon_2^2)^{1/2} \right)^{1/2} \implies \kappa = \frac{\varepsilon_2}{2n}$$

Ośrodek słabo absorbujący (już było…)

Absorpcja na swobodnych nośnikach

Foton ma bardzo mały pęd, żeby wiec spełniona była zasada zachowania pędu konieczny jest proces rozpraszania elektronu na fononach lub domieszkach!

Wyniki doświadczenia

Absorpcja w podczerwieni

FIG. 7. Absorption coefficient, α , and susceptibility, χ_c , vswavelength for the *p*-type indium antimonide sample of Fig. 6.

W. G. Spitzer, H.Y. Fan, Phys. Rev. **106**, 882 (1957)

Absorpcja na swobodnych nośnikach w SiC

P. Mroziński (Praca magisterska, ZFCSt UW)

Współczynnik odbicia

Zaniedbując tłumienie (γ =0)

Możemy też przedstawić współczynnik odbicia w zależności od długości fali

Żeby porównać się z doświadczeniem, trzeba dodać tłumienie – Wtedy krawędź plazmowa się rozmyje....

Silnie domieszkowane w InSb

Odbicie światła w podczerwieni

$$R = \left|\frac{\widetilde{n} - 1}{\widetilde{n} + 1}\right|^2 = \frac{(n-1)^2 + \kappa^2}{(n+1)^2 + \kappa^2}$$

Wstawiamy odpowiednie funkcje z tłumieniem i porównujemy z doświadczeniem...

Odbicie spada do zera gdy:

Metoda wyznaczania masy efektywnej nośników!

FIG. 8. Reflectivity vs wavelength for five *n*-type indium antimonide samples. The refractive index curve labeled *n* is for the sample with $N = 6.2 \times 10^{17}$ cm⁻³.

W. G. Spitzer, H.Y. Fan, Phys. Rev. 106, 882 (1957)

Oscylator harmoniczny (oscylujący dipol)

Klasyczny opis oddziaływania światła z materią

Zakładamy, że w ośrodku (również półprzewodniku) zachodzą różnego rodzaju Wzbudzenia, które można opisać przy użyciu modelu oscylatora harmonicznego. Model ten zakłada istnienie momentów dipolowych, bez wchodzenia w ich naturę. Okazuje się, że taki opis dobrze działa zarówno dla atomów, domieszek, defektów, jak też drgań sieci krystalicznej oraz wzbudzeń swobodnych nośników (co już częściowo pokazaliśmy na poprzednim wykładzie)...

 $m_J >> m_0 \Longrightarrow \mu \approx m_0$

Odpowiada to ruchowi elektronu wokół spoczywającego jądra...

Rozsunięciu ładunku jądra i elektronu towarzyszy pojawienie się **momentu dipolowego** (dodającego się do ew.

$$\vec{p} = q(\vec{r}_+ - \vec{r}_-)$$

r⁺ −położenie ładunku dodatniego

ujemnego

- położenie ładunku

 \vec{l}

$$p = -e\left|\vec{r}_{+} - \vec{r}_{-}\right| = -ex$$

$$p(t) = -ex(t)$$

$$x(t) \quad \begin{array}{l} - \text{ odchylenie elektronu od} \\ \text{,,pozycji'' równowagowej} \\ m \frac{d^2 x}{dt^2} + m \gamma \frac{dx}{dt} + m \omega_0^2 x = -eE \quad \text{(*)} \end{array}$$

Rozważmy oddziaływanie atomu z monochromatycznym promieniowaniem o częstości ω

$$E(t) = E_0 \cos(\omega t + \varphi) = E_0 \operatorname{Re}(e^{-i\omega t - \varphi})$$
$$x(t) = X_0 \operatorname{Re}(e^{-i\omega t - \varphi_1})$$

Pole wymuszające: $E(t) = E_0 e^{-i\omega t}$

(czynniki fazowe w amplitudach)

Szukamy rozwiązań $x(t) = X_0 e^{-i\omega t}$ postaci:

$$m\frac{d^{2}x}{dt^{2}} + m\gamma\frac{dx}{dt} + m\omega_{0}^{2}x = -eE$$

$$m\omega^{2}X_{0}e^{-i\omega t} - im\gamma X_{0}e^{-i\omega t} + m\omega_{0}^{2}X_{0}e^{-i\omega t} = -eE_{0}e^{-i\omega t}$$

$$X_{0} = \frac{-eE_{0}}{m}\frac{1}{\omega_{0}^{2} - \omega^{2} - i\gamma\omega}$$

Rezonansowa polaryzacja zmienna w czasie, dla N obiektów w jednostce objętości:

$$P_{rez} = Np(t) = -eNx(t) = \frac{Ne^2}{m} \frac{1}{\omega_0^2 - \omega^2 - i\gamma\omega} E$$

$$\vec{D} = \varepsilon_0 \varepsilon_r \vec{E}$$

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P}_{inne} + \vec{P}_{rez} = \varepsilon_0 \vec{E} + \varepsilon_0 \chi \vec{E} + \vec{P}_{rez}$$

$$\varepsilon_r(\omega) = 1 + \chi + \frac{Ne^2}{\varepsilon_0 m} \frac{1}{\omega_0^2 - \omega^2 - i\gamma\omega}$$
Część rzeczywista i urojona
funkcji dielektrycznej
$$\varepsilon_1(\omega) = 1 + \chi + \frac{Ne^2}{\varepsilon_0 m} \frac{\omega_0^2 - \omega^2}{(\omega_0^2 - \omega^2)^2 + (\gamma\omega)^2}$$

$$\varepsilon_2(\omega) = \frac{Ne^2}{\varepsilon_0 m} \frac{\gamma\omega}{(\omega_0^2 - \omega^2)^2 + (\gamma\omega)^2}$$

W granicy częstości dążących do zera:

$$\varepsilon_r(\omega) = 1 + \chi + \frac{Ne^2}{\varepsilon_0 m} \frac{1}{\omega_0^2 - \omega^2 - i\gamma\omega}$$
$$\sum_{\varepsilon_r(0) = \varepsilon_{st}} \varepsilon_r(0) = \varepsilon_{st} = 1 + \chi + \frac{Ne^2}{\varepsilon_0 m \omega_0^2}$$

Definicja statycznej stałej dielektrycznej

W granicy bardzo dużych częstości:

$$\mathcal{E}_{r}(\infty) \equiv \mathcal{E}_{\infty} = 1 + \chi$$

Stąd $\mathcal{E}_{st} - \mathcal{E}_{\infty} = \frac{Ne^{2}}{\mathcal{E}_{o}m\omega_{0}^{2}}$

$$\varepsilon_r(\omega) = \varepsilon_{\infty} + (\varepsilon_{\rm st} - \varepsilon_{\infty}) \frac{\omega^2}{\omega_0^2 - \omega^2 - i\gamma\omega}$$

Blisko rezonansu:

 $\omega_0^2 - \omega^2 \cong 2\omega_0 \Delta \omega$ gdzie $\Delta \omega = \omega - \omega_0$

$$\varepsilon_{1}(\Delta\omega) = \varepsilon_{\infty} - (\varepsilon_{st} - \varepsilon_{\infty}) \frac{2\omega_{0}\Delta\omega}{4(\Delta\omega)^{2} + (\gamma)^{2}}$$

$$\varepsilon_{2}(\Delta\omega) = (\varepsilon_{st} - \varepsilon_{\infty}) \frac{\gamma\omega_{0}}{4(\Delta\omega)^{2} + (\gamma)^{2}}$$

Złożenie wielu różnych oscylatorów

$$\vec{P}_{rez} = \frac{Ne^2}{m} \sum_{j} \frac{1}{\omega_{j0}^2 - \omega^2 - i\gamma_j \omega} \vec{E}$$

Wkład do polaryzacji od różnych przejść

 $\mathcal{E}_{r}(\omega) = 1 + \frac{Ne^{2}}{\mathcal{E}_{0}m} \sum_{i} \frac{1}{\omega_{i0}^{2} - \omega^{2} - i\gamma_{i}\omega}$ Funkcja dielektryczna

$$\varepsilon_r(\omega) = 1 + \frac{Ne^2}{\varepsilon_0 m} \sum_j \frac{f_j}{\omega_{j0}^2 - \omega^2 - i\gamma_j \omega}$$

$$f_{_j}\,$$
 - siła oscylatora

Koncepcję siła oscylatora można wyjaśnić na gruncie mechaniki kwantowej. Można pokazać, że

W praktyce wkład od poszczególnych oscylatorów różni się. Wprowadzamy więc "siłę oscylatora" f_j dla każdego z nich...

 $\sum_{j} f_{j} = 1$

Hipotetyczny półprzewodnik...

