Microcavities with CdTe QDs are further etched to form micropillar photonic structures with various novelty aspects. Fascinating example is a micropillar with additional DBR on side walls, which allows not only for fastening of PL decay, but also for inhibition of PL, depending on relative position of emission lines and cavity modes.

Fig. 2 presenting a Purcell affect in 3D cavity.

   "Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Micropillar Cavities with Radial Distributed Bragg Reflectors",
T. Jakubczyk, H. Franke, T. Smoleński, M. Ściesiek, W. Pacuski, A. Golnik, R. Schmidt-Grund, M. Grundman , C. Kruse, D. Hommel, P. Kossacki,
ACS Nano 8, 9970 (2014).  

   "Pronounced Purcell enhancement of spontaneous emission in CdTe/ZnTe quantum dots embedded in micropillar cavities",
T. Jakubczyk, W. Pacuski, T. Smoleński, A. Golnik, M. Florian, F. Jahnke, C. Kruse, D. Hommel, P. Kossacki,
Appl. Phys. Lett. 101, 132105 (2012).

   "Monolithic ZnTe-based pillar microcavities containing CdTe quantum dots",
C. Kruse, W. Pacuski, T. Jakubczyk, J. Kobak, J. A. Gaj, K. Frank, M. Schowalter, A. Rosenauer, M. Florian, F. Jahnke, D. Hommel,
Nanotechnology 22, 285204 (2011).

Finally, we fabricated a micropillar with a QD with a single magnetic ion,

   "Micropillar cavity containing a CdTe quantum dot with a single manganese ion",
W. Pacuski, T. Jakubczyk, C. Kruse, J. Kobak, T. Kazimierczuk, M. Goryca, A. Golnik, P. Kossacki, M. Wiater, P. Wojnar, G. Karczewski, T. Wojtowicz, D. Hommel,
Crystal Growth & Design 14, 988 (2014).  

   "Ultra-long-working-distance spectroscopy of single nanostructures with aspherical solid immersion microlenses",
A. Bogucki, Ł. Zinkiewicz, M. Grzeszczyk, W. Pacuski, K. Nogajewski, T. Kazimierczuk, A. Rodek, J. Suffczyński, K. Watanabe, T. Taniguchi, P. Wasylczyk, M. Potemski, P. Kossacki,
Light: Science & Applications 9, 48 (2020).       , Press release EN, PL.