

CMS Experiment at LHC, CERN Data recorded: Sun Oct 17 06:19:04 2010 Run/Event: 148031 / 466240176 Lumi section: 586

Latest CMS Higgs

Dmytro Kovalskyi (UCSB)

- New particle with ~125 GeV mass
- \triangleright 5 σ discovery claim from both ATLAS and CMS
- Tevatron: 2.9σ excess for Higgs from 115 to 130 GeV

$H \rightarrow ZZ \rightarrow 4\ell$

PAS (HIG-13-002): <u>http://cdsweb.cern.ch/record/1523767</u>

TWiki: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig13002TWiki</u>

HZZ Analysis Details

New with respect to November 2012

- event categorization based on jet multiplicity
 - probe qqH,VH and ttH production mechanisms
- improved background estimation methods
- Selection requirements
 - Muon/electron min Pt: 5/7 GeV
 - ▶ mZI∈[40,120] GeV; mZ2∈[12,120] GeV
 - Loose ID and isolation requirements
 - ➢ 3D impact parameter significance < 4</p>
- Background estimations
 - **ZZ**, $Z\gamma^*$ irreducible (from Monte Carlo)
 - POWHEG, Madgraph (alternative)
 - Z+fakes reducible (data-driven methods)

Signal Strength

Solution Served/expected signal significance: 6.7σ / 7.2σ

Cross-section with respect to SM: $\sigma/\sigma_{SM} = 0.91+0.30-0.24$

Higgs Production

Table 3: List of models used in analysis of spin-parity hypotheses corresponding to the pure states of the type noted. The expected separation is quoted for two scenarios, when the signal strength for each hypothesis is pre-determined from the fit to data and when events are generated with SM expectation for the signal yield (μ =1). The observed separation quotes consistency of the observation with the 0⁺ model or J^P model, and corresponds to the scenario when the signal strength is pre-determined from the fit to data. The last column quotes CL_s criterion for the J^P model.

J^{P}	production	comment	expect (µ=1)	obs. 0 ⁺	obs. J^P	CLs
0-	$gg \rightarrow X$	pseudoscalar	2.6 σ (2.8σ)	0.5σ	3.3σ	0.16%
0_{h}^{+}	$gg \rightarrow X$	higher dim operators	$1.7\sigma (1.8\sigma)$	0.0σ	1.7σ	8.1%
2^{+}_{mgg}	$gg \rightarrow X$	minimal couplings	$1.8\sigma (1.9\sigma)$	0.8σ	2.7σ	1.5%
$2^{+}_{mq\bar{q}}$	$q\bar{q} \rightarrow X$	minimal couplings	1.7σ (1.9σ)	1.8σ	4.0σ	<0.1%
1- "	$q\bar{q} \rightarrow X$	exotic vector	2.8 σ (3.1σ)	1.4σ	$>4.0\sigma$	<0.1%
1+	$q\bar{q} \rightarrow X$	exotic pseudovector	2.3 <i>σ</i> (2.6 <i>σ</i>)	1.7σ	$>4.0\sigma$	<0.1%

All results are consistent with SM

$H \rightarrow WW \rightarrow 2 \ell 2v$

PAS (HIG-13-003): <u>http://cdsweb.cern.ch/record/1523673</u>

TWiki: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig13003TWiki</u>

- No mass peak due to undetected neutrinos (effectively a counting experiment)
- Proper estimation of backgrounds is vital (data driven for more reliable results)
- Dominant backgrounds:WW, top,W+jets and Z+jets
- Events are categorized by number of jets and lepton final states (ee + $\mu\mu$, e μ)

HWW Analysis Details

Selection

- Leading/trailing lepton Pt: 20/10 GeV
- Stringent lepton identification
- min(projected MET, projected track MET) > 20 GeV for eµ
- ▷ DY MVA for ee/µµ

- 2D shape analysis (mll vs mT)
 - optimal sensitivity for low mass Higgs
 - straight-forward interpretation of data
- Nothing fundamentally new with respect to November 2012 update

Signal Strength

WW Background

Spin Analysis

CMS Preliminary $\sqrt{s} = 7$ TeV, L = 4.9 fb⁻¹; $\sqrt{s} = 8$ TeV, L = 19.5 fb⁻¹

- HWW analysis is designed in a way to easily accommodate spin2 hypothesis testing
 - The analysis is sensitive only to minimal couplings spin2
- Expected separation for μ =1 2.4 σ
- For observed signal strength
 - Expected separation of Spin2 from SM: I.8σ
 - Observed separation of Spin2 from SM: 1.3σ
- Result is consistent with HZZ results

- Search for second SM Higgs like particle
- Treat the observed boson as a SM background
- No evidence for new particle is found

No public documentation yet

Morion Talk: http://moriond.in2p3.fr/QCD/2013/ThursdayMorning/Ochando.pptx

CMS works and the second secon

Higgs to YY

- Signature: two isolated energetic photons
- Photon Pt: m_{YY}/3 / m_{YY}/4 GeV
 - ▶ for m_{YY}=120: 40/30 GeV

H_{YY} Analysis Details

AND STORES OF A

- Signal extraction:
 - Split events in categories
 - First tag events with large contributions from VBF and associated productions
 - Categorized untagged events by signal purity
 - Fit for a peak in m_{YY} distributions in each category

MVA analysis

MVA discriminant (BDT) constructed using

- photon kinematics
 - ▷ relative transverse momenta of both photons (p_T/m_{YY})
 - pseudo-rapidities of both photons
 - ▷ $cos(φ_1 φ_2)$
- photon ID MVA score (shower shape, isolation)
- di-photon mass resolution
 - depends on probability to pick correct primary vertex
- 4 untagged categories with different S/B

Cut-based analysis

4 untagged categories:

- Barrel / endcap and converted/ unconverted from shower shape R9
- Different mass resolution and S/B among the 4 categories
- 4 MVA analysis has ~15% better sensitivity

Detector Calibration

March 15, 2013

Latest CMS Higgs Results - Dmytro Kovalskyi

ICHEP 2012 vs Moriond 2013

- Cross-section: $\sigma/\sigma_{SM} = 1.6 \pm 0.4$
- Significance (exp/obs): 2.8σ / 4.1σ

- Cross-section: $\sigma/\sigma_{SM} = 1.6 \pm 0.4$
- Significance (exp/obs): 4.2σ / 3.2σ

Comparing Two Analyses

MVA analysis **Cut-based** analysis 2.5 ²⁰ ²⁰ Best Fit σ/σ_{SM} Best Fit σ/σ_{SM} **CMS preliminary CM\$** preliminary 68% CL Band 68% CL Band $\sqrt{s} = 7 \text{ TeV L} = 5.1 \text{ fb}^{-1}$ $\sqrt{s} = 7 \text{ TeV L} = 5.1 \text{ fb}^{-1}$ $\sqrt{s} = 8 \text{ TeV L} = 19.6 \text{ fb}^{-1}$ √s = 8 TeV L = 19.6 fb⁻¹ 0 0 -0.5 -0.5 -1.5 -1.5 -2^{L_} 110 ¹⁴⁰ (GeV) $M_{\rm H} ({\rm GeV/c}^2)^{135}$ -**f**10 130 135 150 115 120 125 115 120 125 130 7+8 TeV: σ/σ_{SM} @ 124.5 GeV = 1.11 +0.32 _0.30 7+8 TeV: σ/σ_{SM} @ 125.0 GeV = 0.78 +0.28 -0.26 7 TeV: σ/σ_{SM} @ 125.0 GeV = 1.69 +0.65 -0.59 7 TeV: σ/σ_{SM} @ 124.5 GeV = 2.27 +0.80 -0.74 8 TeV: σ/σ_{SM} @ 125.0 GeV = 0.55 $^{+0.29}_{-0.27}$ 8 TeV: σ/σ_{SM} @ 124.5 GeV = 0.93 +0.34 _-0.32

What all does it mean?

- Low signal to background ratio a fundamental feature of this channel
 - Uncertainty on signal strength driven by statistical fluctuations of the background
 - Analysis changes can lead to statistical changes due to fluctuations in selected events and their mass
- Correlation between MVA and cut-based measurements is 0.76
 - Estimated using jackknife techniques
- \triangleright Observed changes in results are all statistically compatible at less than 2σ
- Delay in making results public was caused by additional checks that were requested by CMS Collaboration
 - We found no reasons to believe that either analysis is wrong
 - Results are considered to be solid enough to be made public

Test	Signal strength compatibility
MVA vs CiC 7+8 TeV	Ι.5 σ
MVA vs CiC 8 TeV only	Ι.8 σ
Updated MVA vs published (5.3/fb 8TeV)	Ι.6 σ
Updated CiC vs published (5.3/fb 8TeV)	0.5 σ

Mass Measurement

H→ZZ→ 4I

- Lepton momentum scale & resolution validated with Z, J/ ψ , and Υ —II samples.
- m4l uncertainties due to lepton scale: 0.1% (4µ), 0.3% (4e)

Н⊸үү

 Systematic errors dominated by overall photon energy scale: 0.47% (mostly coming from extrapolation from Z→H and e→γ)

Measurements in the two channels are well compatible.

$H \rightarrow TT$

No public documentation yet, only talks:

<u>https://indico.in2p3.fr/getFile.py/access?</u> contribld=57&sessionId=6&resId=0&materialId=slides&confld=7411

http://moriond.in2p3.fr/QCD/2013/ThursdayMorning/Puigh.pdf

- Final states: μT_h , eT_h , $e\mu$, $\tau_h T_h$, $\mu\mu$
- Mass reconstruction SVFit
 - under-constrained ML fit using a matrix element to compute likelihood of the leptonic tau decays
- Use multivariate regression to avoid PU related resolution degradation
- Event Classification
 - by number of jets and Higgs Pt

Mass Distributions

μτ_h (VBF) - one of most sensitive channels

Weighted multi-channel distribution

Mass Measurement

m_H = 120 + 9 - 7 GeV

H→bb

Last update November 2012

PAS (HIG-12-044): <u>http://cdsweb.cern.ch/record/1493618</u>

TWiki: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig12044TWiki</u>

Analysis Overview

- Hbb events reconstructed only in association with W and Z decaying leptonically
 - Dominant backgrounds:Wjets, Zjets, Top
- Analysis Strategy use MVA to get best Signal/Background separation
 - rely on boosted W/Z and Higgs
 - b-jet energy regression helps improve resolution

Results

Expected Sensitivity with 300/fb

- LHC delivered good quality data
 - ► ~25/fb of data at 7-8 TeV
 - Higgs results look extremely good
- Signal Strength (σ/σ_{SM}):
 - ▶ $H \rightarrow ZZ \rightarrow 4I: 0.9I^{+0.30} -0.24$
 - $\blacksquare \quad H \rightarrow VVV \rightarrow 2I2v: 0.76 \pm 0.2I$
 - ► H→YY: 0.78 +0.28 -0.26
 - ► H→ττ: I.I ± 0.4
 - ▶ $H \rightarrow bb: 1.3^{+0.7}_{-0.6}$

Looks like the new boson is the Standard Model Higgs

Backup Slides

CCMS unit include

H_{ZZ} Kinematic Discriminant

- Matrix Element
 - ▶ 5 angles, M_{Z1}, M_{Z2}
 - transverse momentum of the four-lepton system

H_{ZZ} Hypothesis Testing 2

Figure 13: Distributions of \mathcal{D}_{J^p} with a requirement $\mathcal{D}_{bkg} > 0.5$. Distributions in data (points with error bars) and expectations for background and signal are shown. Six alternative hypotheses are tested from top to bottom and left to right: $J^p = 0^-, 0^+_h, 1^-, 1^+, 2^+_m(gg), 2^+_m(q\bar{q})$.

H_{ZZ} Hypothesis Testing 3

Figure 14: Distribution of $q = -2\ln(\mathcal{L}_{J^P}/\mathcal{L}_{SM})$ for two signal types (0⁺ represented by the yellow histogram and alternative J^P hypothesis by the blue histogram) for $m_H = 126$ GeV shown with a large number of generated experiments. The arrow indicates the observed value. Six alternative hypotheses are tested from top to bottom and left to right: $J^P = 0^-, 0^+_h, 1^-, 1^+, 2^+_{mgg}, 2^+_{mq\bar{q}}$.

Higgs to bb

- Most challenging channel
 - Higgs is searched in associated production WH, ZH to control QCD bb background
- Events are categorized by W/Z pt and its decay channel, i.e. $\ell \ \ell$, vv, ℓv
- Dominant backgrounds:V+bjets,Top

Exploring Couplings

- Effective Lagrangian approach: SM + "anomalous couplings"
 - Kinematic distributions are likely to be modified
 - In the simplest model one can looks for deviations only in coupling strength

$$(\sigma \cdot BR) (gg \rightarrow H \rightarrow \gamma \gamma) = \sigma_{SM}(gg \rightarrow H) \cdot BR_{SM}(H \rightarrow \gamma \gamma) \cdot rac{\kappa_g^2 \cdot \kappa_\gamma^2}{\kappa_H^2}$$

For Standard Model $\kappa = 1$

Production modes

$$\frac{\sigma_{ggH}}{\sigma_{ggH}^{SM}} = \begin{cases} \kappa_g^2(\kappa_b, \kappa_t, m_H) \\ \kappa_g^2 & (3) \end{cases}$$
Detectable decay modes

$$\frac{\Gamma_{WW^{(*)}}}{\Gamma_{WW^{(*)}}^{SM}} = \kappa_W^2 \qquad (8)$$

$$\frac{\sigma_{VBF}}{\sigma_{VBF}^{SM}} = \kappa_V^2 & (5)$$

$$\frac{\sigma_{WH}}{\sigma_{WH}^{SM}} = \kappa_Z^2 \qquad (6)$$

$$\frac{\sigma_{ZH}}{\sigma_{ZH}^{SM}} = \kappa_Z^2 \qquad (6)$$

$$\frac{\sigma_{tTH}}{\sigma_{tTH}^{SM}} = \kappa_t^2 \qquad (7)$$

$$\frac{\Gamma_{\tau-\tau^+}}{\Gamma_{\tau-\tau^+}^{SM}} = \kappa_t^2 \qquad (11)$$

$$\frac{\Gamma_{YY}}{\Gamma_{YY}^{SM}} = \begin{cases} \kappa_\ell^2(\kappa_b, \kappa_t, \kappa_\tau, \kappa_W, m_H) & (12)$$

$$\frac{\Gamma_{ZY}}{\Gamma_{ZY}^{SM}} = \begin{cases} \kappa_{(ZY)}^2(\kappa_b, \kappa_t, \kappa_\tau, \kappa_W, m_H) & (13)$$

Benchmark Parametrization

- A number of parameterizations can be derived with different assumptions
 - LHC HXSWG interim recommendations to explore the coupling structure of a Higgs-like particle (arXiv:1209.0040)
- Simplest model common scale factor: $\kappa = \kappa_t = \kappa_b = \kappa_T = \kappa_W = \kappa_Z$
 - ► ATLAS: κ = 1.4 ± 0.3
 - CMS: κ = 0.87 ± 0.23
- Scaling of vector boson and fermion couplings
 - Higgs can play a different role in vector boson and fermion sectors

Boson and fermion scaling assuming no invisible or undetectable widths						
Free parameters: $\kappa_{\rm V} (= \kappa_{\rm W} = \kappa_{\rm Z})$, $\kappa_{\rm f} (= \kappa_{\rm t} = \kappa_{\rm b} = \kappa_{\rm t})$.						
	${ m H} ightarrow \gamma \gamma$	$H \rightarrow ZZ^{(*)}$	${ m H} ightarrow { m WW}^{(*)}$	$\mathrm{H} \to \mathrm{b} \overline{\mathrm{b}}$	$\mathrm{H} \to \tau^- \tau^+$	
ggH	$\kappa_{ m f}^2 \cdot \kappa_{ m g}^2(\kappa_{ m f},\kappa_{ m f},\kappa_{ m f},\kappa_{ m V})$	$\kappa_{\rm f}^2$	$2 \cdot \kappa_V^2$	κ	${}_{\rm f}^2 \cdot \kappa_{\rm f}^2$	
$t\overline{t}H$	$rac{\kappa_{ m H}^2(\kappa_i)}{\kappa_{ m H}^2(\kappa_i)}$	$\overline{\kappa_{ m H}^2(\kappa_i)}$		$\overline{\kappa_{ m H}^2(\kappa_i)}$		
VBF	$r^{2} r^{2} (r_{2} r_{3} r_{5} r_{5} r_{5})$	r ²	.r ²	100	22	
\mathbf{WH}	$\frac{\mathbf{\kappa}_{\mathrm{V}}\cdot\mathbf{\kappa}_{\mathrm{\gamma}}\left(\mathbf{\kappa}_{\mathrm{f}},\mathbf{\kappa}_{\mathrm{f}},\mathbf{\kappa}_{\mathrm{f}},\mathbf{\kappa}_{\mathrm{V}}\right)}{\mathbf{r}^{2}\left(\mathbf{r}_{\mathrm{v}}\right)}$	$\frac{\kappa_{\rm V}}{r^2}$	$\frac{\sqrt{\kappa_V}}{\kappa_V}$		$\frac{V \cdot \mathbf{k}_{f}}{(\mathbf{r}_{f})}$	
\mathbf{ZH}	$\mathbf{k}_{\mathrm{H}}(\mathbf{k}_{i})$	μ	[(~1)	⊾	$I(\kappa_i)$	

LESESSEE D

2222222

g

TABLE I: List of scenarios chosen for the analysis of the production and decay of an exotic X particle with quantum numbers J^P . The subscripts m (minimal couplings) and h (couplings with higher-dimension operators) distinguish different scenarios, as discussed in the last column. The spin-zero and spin-one X production parameters do not affect the angular and mass distributions, and therefore are not specified.

scenario	X production	$X \to VV$ decay	comments
0_m^+	$gg \to X$	$g_1^{(0)} \neq 0$ in Eq. (9)	SM Higgs boson scalar
0_h^+	$gg \to X$	$g_2^{(0)} \neq 0$ in Eq. (9)	scalar with higher-dimension operators
0^{-}	$gg \to X$	$g_4^{(0)} \neq 0$ in Eq. (9)	pseudo-scalar
1^{+}	$q \bar{q} o X$	$b_2 \neq 0$ in Eq. (16)	exotic pseudo-vector
1^{-}	$q\bar{q} o X$	$b_1 \neq 0$ in Eq. (16)	exotic vector
2_m^+	$g_1^{(2)} \neq 0$ in Eq. (18)	$g_1^{(2)} = g_5^{(2)} \neq 0$ in Eq. (18)	graviton-like tensor with minimal couplings
2_h^+	$g_4^{(2)} e 0$ in Eq. (18)	$g_4^{(2)} e 0$ in Eq. (18)	tensor with higher-dimension operators
2_h^-	$g_8^{(2)} e 0$ in Eq. (18)	$g_8^{(2)} e 0$ in Eq. (18)	"pseudo-tensor"

Higgs \rightarrow WW \rightarrow 2I2v

Missing Energy (neutrinos)

Higgs Signature:

- 2 isolated leptons (electron or muon)
- large missing energy
- Sensitivity: low and high mass
- Highest rate with manageable background
- Counting experiment, no mass peak

Analysis Challenges

- - No mass is reconstructed essentially a counting experiment
 - Key selection requirements:
 - lepton pt>10 GeV with tight identification and isolation - QCD, Wjets
 - large missing transverse energy (MET) and Z veto - Drell-Yan
 - number of jet classification (Pt>30GeV) and b-quark veto - **Top**
 - kinematics (m₁, d ϕ) WW
 - Final step selection requirements are optimized for different Higgs mass hypotheses

Analysis Challenges

- No mass is reconstructed essentially a counting experiment
- Underestimation of any background can lead to a signal like excess!
 - Background estimation is the most important part of the analysis

jets

- Jets main source of fakes
- Requirements: pt, isolation, impact parameter, quality
- ▶ Tight →Loose: 10-100 time more fake leptons
- Use QCD sample to measure fake rate: ε = N_B/N_A
- Background estimation:

$$N_D = N_C \frac{\varepsilon}{1 - \varepsilon}$$

Systematic uncertainty of the method: ~35%

Missing Energy with PileUp

2011 data differs from 2010:

- ~8 interactions per bunch crossing
- larger tails in the missing energy distribution

Two different MET variables:

- nominal calorimeter and tracker
- only tracker based MET
 - not affected by pile up

pfMET and trkMET are weakly correlated for backgrounds

- use the smaller one for each event
- minMet>40 (same flavor)
- minMet>20 (opposite flavor)

Drell-Yan Estimation

- Drell-Yan: ee/μμ, but not eμ
- Use eµ events to subtract backgrounds
- Narrow Z-peak little background
- Rout/in is measure both in simulation and in data
- Systematic uncertainties can be as large as 100%

Top Background

- Jet veto kills top
- Remaining top can be tagged:
 - soft b-jets
 - ▶ soft muons
- ▶ Top tagging eff is ~50% for 0-jet

$$N_{top} = N_{tag} \frac{\varepsilon}{1 - \varepsilon}$$

- Measure ε in I-bjet events
 - There mast be another b-quark
- Systematics ~ 20-30%

WW Background

WW is an irreducible background - one order of magnitude larger SM Higgs

- **Kinematics is the main discriminator**:
 - ▹ low mass dPhi, MII
 - ▶ for mH≤130 need to lower lepton pt → larger Wjets background
 - above 200GeV WW and Higgs harder to distinguish
- Use signal free events to calibrate WW yield