Nanostructures – density of states

Faculty of Physics UW Jacek.Szczytko@fuw.edu.pl

Density of states Number of states per unit energy $\rho^{nD}(E)$ depends on the dimension

If our crystal has a finite size the set of k –vectors is finite (though enormous!). For example: we can assume periodic boundary conditions and then:

Lx

Density of states Number of states per unit energy $\rho^{nD}(E)$ depends on the dimension

The density of states in k -space of n dimension (and the unite volume)

3D case

$$
\rho^{3D}(E)dE = \rho_k^{3D}d\vec{k} = 2\left(\frac{1}{2\pi}\right)^3 4\pi k^2 dk
$$

For a spherical and parabolic band:

$$
\rho_c^{3D}(E) = \frac{1}{2\pi^2} \left(\frac{2m_0 m_c^*}{\hbar^2}\right)^{3/2} \sqrt{E - E_c}
$$

$$
\rho_v^{3D}(E) = \frac{1}{2\pi^2} \left(\frac{2m_0 m_h^*}{\hbar^2}\right)^{3/2} \sqrt{E_v - E}
$$

 $\rho_k^{nD}=2$

1

 \boldsymbol{n}

 2π

Density of states Number of states per unit energy $\rho^{nD}(E)$ depends on the dimension

The density of states in k -space of n dimension (and the unite volume)

3D case

$$
\rho^{3D}(E)dE = \rho_k^{3D}d\vec{k} = 2\left(\frac{1}{2\pi}\right)^3 4\pi k^2 dk
$$

For a spherical and parabolic band:

$$
\rho_c^{3D}(E) = \frac{1}{2\pi^2} \left(\frac{2m_0 m_c^*}{\hbar^2}\right)^{3/2} \sqrt{E - E_c}
$$

$$
\rho_v^{3D}(E) = \frac{1}{2\pi^2} \left(\frac{2m_0m_h^*}{\hbar^2}\right)^{3/2} \sqrt{E_v - E}
$$

 $\rho_k^{nD}=2$

1

 \boldsymbol{n}

 2π

Inside the well:

2D density of states for a spherical and parabolic band:

Marc Baldo MIT OpenCourseWare Publication May 2011

Density of states – 2D

Density of states – 2D

FIG. 1. cw absorption (i.e., $1 -$ reflectivity; bold line, left axis) and the TR-PL integrated over 1300 ps (logarithmic scale, right) results. $E_{1s} = 1.4823$ eV $(E_{2s} = 1.4882$ eV) is the 1s (2s) heavy-hole exciton, $E_{\text{plasma}} = 1.4888 \text{ eV}$, lighthole exciton $E_{\text{lh}} = 1.4988$ eV (vertical lines). The low energy exponential tail of the excitonic transition originates from the trion at 1.4807 eV (discussed in $[18]$).

J. Szczytko, et al. Phys. Rev. Lett. 93, 137401 (2004)

Density of states – 1D

1D density of states for a spherical and parabolic band :

$$
\rho^{1D}(E)dE = \rho_k^{1D}d\vec{k} = 2\left(\frac{1}{2\pi}\right)^{1} 2 dk
$$

$$
\rho^{1D}(E)dE = \frac{2}{\pi} \sqrt{\frac{m_0 m^*}{2\hbar^2}} \sum_{a_x, a_y} \frac{\theta \left(E - E_{a_x, a_y}\right)}{\sqrt{E - E_{a_x, a_y}}} dE
$$

Density of states

Density of states – 1D

0D density of states

For the ISOLATED QD: $\Delta E \to 0$, $\Delta t \to \infty$ $\rho^{0D}(E)dE = g_n \delta(E - E_n)dE$

Suppose that the lifetime of the state energy E is equal to τ , we assume an exponential decay

Density of states – the summary

Density of states

Harmonic potential 2D

Summary –Fermi golden rule

The probability of transition per unit time:

$$
W(t) = W
$$

0 \le t \le \tau

$$
P_{mn} = \frac{w_{mn}}{\tau} = \frac{2\pi}{\hbar} |\langle m|W|n\rangle|^2 \delta(E_m - E_n)
$$

Transitions are possible only for states, for which $E_m = E_n$

$$
W(t) = w^{\pm} e^{\pm i\omega t}
$$

$$
0 \le t \le \tau
$$

\n
$$
P_{nm} = \frac{w_{nm}}{\tau} = \frac{2\pi}{\hbar} |\langle n|w^{\pm}|m\rangle|^{2} \delta(E_{n} - E_{m} \pm \hbar \omega)
$$

Transitions are possible only for states, for which $E_m = E_n \pm \hbar \omega$

The perturbation in a form of an electromagnetic wave:

$$
A_{nm} = \frac{\omega_{nm}^3 e^2}{3\pi \varepsilon_0 \hbar c^3} |\langle m|\vec{r}|n\rangle|^2 = \frac{4\alpha \omega_{nm}^3}{3} |\langle m|\vec{r}|n\rangle|^2
$$

$$
P_{nm} = A_{nm} \delta(E_n - E_m \pm \hbar \omega)
$$

Summary –Fermi golden rule

The transition rate – the probability of transition per unit time – from the initial state $|i\rangle$ to final $|f\rangle$ is given by:

Szybkość zmian – czyli prawdopodobieństwo przejścia na jednostkę czasu – ze stanu początkowego $|i\rangle$ do końcowego $|f\rangle$ dane jest wzorem:

Perturbation W does not have to be in the form of an electromagnetic wave.

Density of states – the summary

The probability that a state of the energy E will be occupied E_F – chemical potential

Anyons – eg. composite fermions $|\Psi_1\Psi_2\rangle = e^{i\theta} |\Psi_2\Psi_1\rangle$ Slave fermions (chargon, holon, spinon) = fermion+bozon with the charge-spin separation

1901 – 1954

Paul Adrian Maurice Dirac 1902 – 1984

$$
f_0 = \frac{1}{e^{\frac{E-E_F}{k_BT}} + 1}
$$

The case of a semiconductor, in which both the electron gas and hole gas are far from the degeneracy:

$$
\frac{E_c - \xi}{k_B T} \gg 1
$$

$$
\frac{\xi - E_v}{k_B T} \gg 1
$$

$$
\frac{E_c - E_v}{k_B T} = \frac{E_g}{k_B T} \gg 1
$$

The probability of filling of the electronic states:

$$
f_e = \frac{1}{e^{\frac{E-\xi}{k_B T}} + 1} = \frac{1}{e^{\frac{E_G}{2k_B T} + \frac{E_e}{k_B T} - \frac{\xi}{k_B T}} + 1}
$$

and of holes:
$$
f_h = 1 - f_e
$$

\n
$$
f_h = \frac{1}{e^{\frac{-E + \xi}{k_B T}} + 1} = \frac{1}{e^{\frac{E_G}{2k_B T} + \frac{E_h}{k_B T} + \frac{\xi}{k_B T}} + 1}
$$

 $\gg 1$

 $\gg 1$

 E_{g}

 k_BT

 $\gg 1$

The case of a semiconductor, in which both the electron gas and hole gas are far from the degeneracy:

The probability of filling of the electronic states:

 E_c-E_ν

 k_BT

 k_BT

 $\xi - E_v$

 k_BT

=

$$
f_e = \frac{1}{e^{\frac{E-\xi}{k_B T}} + 1} = \frac{1}{e^{\frac{E_G}{2k_B T} + \frac{E_e}{k_B T} - \frac{\xi}{k_B T}} + 1} \approx e^{-\frac{E_G}{2k_B T} - \frac{E_e}{k_B T} + \frac{\xi}{k_B T}} - \frac{E_e}{2}
$$

and of holes:
$$
f_h = 1 - f_e
$$

\n
$$
f_h = \frac{1}{e^{\frac{-E + \xi}{k_B T}} + 1} = \frac{1}{e^{\frac{E_G}{2k_B T} + \frac{E_h}{k_B T} + \frac{\xi}{k_B T}} + 1} \approx e^{\frac{-\frac{E_G}{2k_B T} - \frac{E_h}{k_B T} - \frac{\xi}{k_B T}}{1 - \frac{E_h}{k_B T} - \frac{\xi}{k_B T}}}
$$

The case of a semiconductor, in which both the electron gas and hole gas are far from the degeneracy:

the probability of filling of the electronic states:

$$
f_e \approx e^{-\frac{E_G}{2k_BT} - \frac{E_e}{k_BT} + \frac{\xi}{k_BT}}
$$

and of holes $f_h = 1 - f_e$ $f_h \approx e^{-\frac{E_G}{2k_B}}$ $\frac{E_G}{2k_BT}-\frac{E_h}{k_BT}$ $\frac{E_h}{k_B T} - \frac{\xi}{k_B}$ $\overline{k_B T}$

$$
\int_{0}^{\infty} \sqrt{x} e^{-x} dx = \frac{\sqrt{\pi}}{2}
$$

Thus:

$$
n(\xi) = 2 \left(\frac{m_e^* k_B T}{2\pi\hbar^2}\right)^{3/2} e^{-\frac{E_G}{2k_B T}} \cdot e^{\frac{\xi}{k_B T}} = N_c(T) e^{\frac{-(E_c - \xi)}{k_B T}}
$$

$$
p(\xi) = 2 \left(\frac{m_h^* k_B T}{2\pi\hbar^2}\right)^{3/2} e^{-\frac{E_G}{2k_B T}} \cdot e^{-\frac{\xi}{k_B T}} = N_v(T) e^{\frac{-(\xi - E_v)}{k_B T}}
$$

What is the concentration of carriers for T>0?

In the thermodynamic equilibrium for an intrinsic semiconductors (*półprzewodniki samoistne*), the concentration of electrons in the conduction band is equal to the concnetration of holes in the valence band (because they appear only as a result of excitation from the valence band).

$$
n = p = n_{i} \text{ (an intrinsic case)}
$$
\n
$$
n \cdot p = n_{i}^{2} = 4 \left(\frac{k_{B}T}{2\pi\hbar^{2}}\right)^{3} (m_{e}^{*}m_{h}^{*})^{\frac{3}{2}} e^{-\frac{E_{g}}{k_{B}T}} = N_{c}N_{v}e^{-\frac{E_{g}}{k_{B}T}}
$$
\n
$$
n = p = n_{i} = 2 \left(\frac{k_{B}T}{2\pi\hbar^{2}}\right)^{\frac{3}{2}} (m_{e}^{*}m_{h}^{*})^{\frac{3}{4}} e^{-\frac{E_{g}}{2k_{B}T}} = \sqrt{N_{c}N_{v}}e^{-\frac{E_{g}}{2k_{B}T}}
$$
\n
$$
e^{-\frac{E_{g}}{2k_{B}T}}
$$
\n2015-11-27

Intrinsic carrier concentration

What is the concentration of carriers for T>0?

In the thermodynamic equilibrium for an intrinsic semiconductors (*półprzewodniki samoistne*), the concentration of electrons in the conduction band is equal to the concnetration of holes in the valence band (because they appear only as a result of excitation from the valence band).

$$
n \cdot p = n_i^2 = 4 \left(\frac{k_B T}{2\pi \hbar^2}\right)^3 (m_e^* m_h^*)^{\frac{3}{2}} e^{-\frac{E_g}{k_B T}} = N_c N_v e^{-\frac{E_g}{k_B T}}
$$
\n(general formula)\n
$$
n = p = n_i \text{ (an intrinsic case)}
$$
\n
$$
n = p = n_i = 2 \left(\frac{k_B T}{2\pi \hbar^2}\right)^{\frac{3}{2}} (m_e^* m_h^*)^{\frac{3}{4}} e^{-\frac{E_g}{2k_B T}} = \sqrt{N_c N_v} e^{-\frac{E_g}{2k_B T}}
$$
\n
$$
\frac{N_c}{N_v} = e^{\frac{2\xi - E_g}{k_B T}} \Rightarrow \xi = \frac{1}{2} (E_c + E_v) + \frac{3}{4} k_B T \ln \left(\frac{m_h^*}{m_e^*}\right)
$$
\n
$$
\frac{1}{2} \text{ in our notation the middle of the band is 0}
$$

Intrinsic carrier concentration

What is the concentration of carriers for T>0?

The intrinsic semiconductors (*półprzewodniki samoistne*) in thermal equilibrium, the concentration of electrons in the conduction band is equal to the concnetration of holes in the valence band.

Koncentracja samoistna typowych półprzewodników

The concentration values less than 10^{10} cm⁻³ do not make sense because the concentration of impurities, and thus the concentration resulting from unintentional doping, is greater

$$
n = p = \sqrt{N_c N_v} e^{-\frac{Eg}{2k_B T}}
$$

\n
$$
n = N_c e^{\frac{E_F - E_c}{k_B T}}
$$

\n
$$
p = N_v e^{-\frac{E_F - E_v}{k_B T}}
$$

Domieszkowanie półprzewodników

Semiconductors

Group III-V: GaAs, AlAs, InSb, InAs... **Group II-VI:** ZnSe, CdTe, ZnO, SdS...

How to control the concentration of carriers?

In semiconductors we can find several deviations from the ideal crystal structure:

- · Defects of the crystal structure, vacancies, the atoms in interstitial positions, dislocations created eg. during the growth process.
- · Foreign atoms (dopants) introduced intentionally or by adding impurities

As a result of their presence:

- · allowed states in the forbidden gap due to deviations from the ideal crystalline potential
- · space charges in insulators
- · screening by free carriers

Dopant states can be classified into:

· Deep - the short-range potential located mainly in the area of one unit cell - eg. a vacancy, izoelectronics dopant (the same valency as atom of the base material e.g. N InP).

· Shallow - mainly long-range Coulomb potential

Hydrogen-like model

Atom of a valency higher than the base material atom becomes a source of Coulomb potential (modified by the dielectric constant of the crystal ε_r) caused by an extra proton in the nucleus. Extra electron in the conduction band feels this potential. The states are described by the effective mass equation:

$$
T = -\frac{\hbar^2}{2m^*} \Delta \qquad U = -\frac{1}{4\pi\varepsilon_0} \frac{e^2}{\varepsilon_r r}
$$

 $T + U\phi(\vec{r}) = E\phi(\vec{r})$

Group IV: diamond, Si, Ge **Group III-V:** GaAs, AlAs, InSb, InAs... **Group II-VI:** ZnSe, CdTe, ZnO, SdS...

Hydrogen-like model

Finally, the problem reduces to the problem of hydrogen atpom with a free carrier of mass m^* in the medium of dielectric constant ε and with a small "perturbation" potential.

$$
E_n = -\left(\frac{m^*}{m_0}\right) \frac{1}{\varepsilon_r^2} R y \frac{1}{n^2}
$$

For typical semiconductors $m_e^* \approx 0.1 m_e$ $\varepsilon_{\rm s} \approx 10$

$$
a_B^* = \frac{4\pi\varepsilon_r\varepsilon_0\hbar^2}{m_0e^2} \left(\frac{m_0}{m^*}\right) = a_B\varepsilon_r \left(\frac{m_0}{m^*}\right)
$$

For Hydrogen $Ry = 13.6$ eV and $a_B = 0.053$ nm

For GaAs semiconductor $Ry^* \approx 5$ meV and $a_B^* \approx 10$ nm

Group IV: diamond, Si, Ge **Group III-V:** GaAs, AlAs, InSb, InAs... **Group II-VI:** ZnSe, CdTe, ZnO, SdS...

Far infrared spectroscopy

Ry =30.28(5) meV

Far infrared spectroscopy

Hydrogen-like model – ionization of the dopant

Doping

The carrier concentration in extrinsic semiconductor (*niesamoistny*) Consider a semiconductor, in which: N_A – concentration of acceptors N_D – concentration of donors p_A – concentration of neutral acceptors n_D – concentration of neutral donors n_c – concentration of electrons in conduction band

 p_v – concentration of holes in valence band

From the charge neutrality of the crystal:

Doping

Electron energy

Electron energy

Eg /2 *-E^g* /2 $\overline{0}$ E_D *EA* E_F conduction band vallence band donor level acceptor level

x

The carrier concentration in extrinsic semiconductor (*niesamoistny*) Consider a semiconductor, in which: N_A – concentration of acceptors N_D – concentration of donors p_A – concentration of neutral acceptors n_D – concentration of neutral donors n_c – concentration of electrons in conduction band

 p_v – concentration of holes in valence band

From the charge neutrality of the crystal:

$$
n_c + (N_A - p_A) = p_v + (N_D - n_D)
$$

$$
n_c + n_D = (N_D - N_A) + p_v + p_A
$$

Occupation of impurity / defect levels in the thermodynamic equilibrium

"Occupation" of localized or band states means the exchange of particles (electrons) between the reservoir and considered subsystem (microstate).

The grand canonical ensemble (subsystem exchange particles and energy with the environment)

Thermodynamic probability (unnormalized) of finding subsystem in a state *j*, in which there are n_j particles (electrons) and which subsystem energy is E_j (the total energy of all n_j particles):

$$
P_j = e^{-\beta(E_j - n_j \xi)}, \qquad \beta = \frac{1}{k_B T}
$$

 ξ - chemical potential.

Statistical sum:

$$
Z = \sum_{j} P_j = \sum_{j} e^{-\beta (E_j - n_j \xi)}
$$

TUTAJ 2015.11.12

Statistical sum :

$$
Z = \sum_{j} P_j = \sum_{j} e^{-\beta (E_j - n_j \xi)}
$$

Statistical means:

$$
\langle A \rangle = \frac{\sum_j A_j \cdot e^{-\beta (E_j - n_j \xi)}}{\sum_j e^{-\beta (E_j - n_j \xi)}}
$$

Examples:

free electron occupying (or not) the quantum state of the \vec{k} -vector and spin: 2 possible states of the subsystem (microstate):

$$
n_0 = 0
$$
; $E_0 = 0$
\n $n_1 = 1$; $E_1 = E$ (the occupation only for one spin state)
\nthe average number of particles of the subsystem:

$$
\langle n \rangle = \frac{0 \cdot e^{0} + 1 \cdot e^{-\beta(E - \xi)}}{1 + e^{-\beta(E - \xi)}} = \frac{1}{e^{\beta(E - \xi)} + 1} = f(E, T)
$$

(Fermi-Dirac distribution)

Examples :

free electron occupying (or not) the quantum state of the \vec{k} -vector and ANY spin: 4 possible states of the subsystem (microstate):

 $n_0 = 0$; $E_0 = 0$ $n_1 = 1; E_1 = E$ (spin 1) $n_2 = 1$; $E_2 = E$ (spin \downarrow) $n_3 = 2; E_3 = 2E$ (spin $\uparrow \downarrow$)

the average number of particles of the subsystem:

$$
\langle n \rangle = \frac{0 \cdot e^{0} + 1 \cdot e^{-\beta(E - \xi)} + 1 \cdot e^{-\beta(E - \xi)} + 2 \cdot e^{-\beta(2E - 2\xi)}}{1 + e^{-\beta(E - \xi)} + e^{-\beta(E - \xi)} + e^{-\beta(2E - 2\xi)}} = 2 \frac{e^{-\beta(E - \xi)} \left(1 + e^{-\beta(E - \xi)}\right)}{(e^{-\beta(E - \xi)} + 1)^{2}} = 2f(E, T)
$$

(Fermi-Dirac distribution x2)

The ratio of the probability of finding dopant / defect of $n + 1$ electrons and of n electrons:

$$
\frac{p_{n+1}}{p_n} = \frac{N_{n+1}/N_{total}}{N_n/N_{total}} = \frac{\sum_{j:n_j=n+1} e^{-\beta [E_j - (n+1)\xi]}}{\sum_{k:n_k=n} e^{-\beta [E_k - n\xi]}} = \frac{g_{n+1}}{g_n} \cdot e^{-\beta [(E_{n+1} - E_n) - \xi]}
$$

 $\sum_n N_n = N$ – impurity (dopants) concentration

 E_{n+1} i E_n – the lowest of all subsystem energies E_i with $n + 1$ and n electrons respectively

Successive impurity energy levels are filled with the increase of the Fermi level.

 $E^{n+1/n}$ – so-called *energy level* of the impurity/ defect "numbered" by charge states $n + 1$ and n

 g_{n+1} , g_n – so-called degeneration of states of subsystem of $n + 1$ and n electrons

Fig. 15. Energy levels of interstitial 3d metals in silicon (full lines), see Table 3, compared with the results of X_n calculations of DeLeo et al. **11.52** (broken lines) **42**

 g_{n+1} , g_n – so-called degeneration of states of subsystem of $n + 1$ and n electrons.

The degeneracy g_{n+1} and g_n takes into account the possibility of the existence of different subsystem states corresponding to a same number of particles (including the excited states):

 $g_n = \alpha_{n,0} + \sum$ $i = 1, 2, ...$ $\alpha_{n,i}e^{-\beta \varepsilon_{n,i}}$

 $\alpha_{n,0}$ *i* $\alpha_{n,i}$ they are respectively: the degeneracies of the n -electronic ground state and its excited states of energies higher than the ground state by $\varepsilon_{n,i}$ (excitation energies)

Such defined degeneration g_n generally depends **on temperature**

Fig. 15. Energy levels of interstitial 3d metals in silicon (full lines), see Table 3, compared with the results of X_n calculations of DeLeo et al. $\left[15\right]$ (broken lines) $\qquad \qquad$ 43

Example – donor (we omit the excited states)

charge state $(+)$ implemented in 1 way : $g_{+} = 1$ charge state(0) implemented in 2 ways (spin \uparrow or \downarrow): $g_0 = 2$ the energy of the donor state ${\rm E}^{0/+}~=~E_D$ Doping concentration of donors N_D

$$
\frac{p_{n+1}}{p_n} = \frac{p_0}{p_+} = \frac{g_0}{g_+} \cdot e^{-\beta [E_D - \xi]}, \qquad p_+ + p_0 = 1
$$

The occupation probability of the donor state:

$$
p_0 = \langle n \rangle = \frac{1}{1 + \frac{g_+}{g_0} \cdot e^{\beta [E_D - \xi]}} = \frac{1}{1 + \frac{1}{2} \cdot e^{\beta [E_D - \xi]}}
$$

The concentration of occupied donor states (neutral donors are N_D^0)

$$
N_D^0 = \frac{N_D}{1 + \frac{1}{2} \cdot e^{\beta [E_D - \xi]}}
$$