
CLASSICAL FIELD THEORY IN THE TIME OF COVID-19
9. LECTURE BATCH

An unavoidable starter on vector bundles

In the present lecture, we intend to discuss a natural structure on the tangent bundle over
the total space of a fibre bundle that geometrises (globally) the decomposition of the tangent
bundle of a local model (a trivialisation) into a (fibred) direct sum of base and fibre (i.e., vertical)
components. Such a structure plays an instrumental rôle in the mathematical description of the
dynamical aspect of the universal gauge principle, it also has an independent physical application
in the modelling of the dynamics of gauge fields (massless vector bosons, such as, e.g., the photon,
the W± and Z bosons (prior to the spontaneous breakdown of the isospin symmetry through
the Higgs effect) and the gluons). In order to be able to navigate comfortably in the domain
of immediate interest, we need a few more requisites from the theory of bundles with a linear
structure on the (typical) fibre that we provide in this here ancillary section. We begin with

Definition 1. Adopt the hitherto notation, fix n ∈ N (arbitrarily) and consider K ∈ {R,C} with
the standard (euclidean) topology and differential structure of class C∞. A vector bundle of
rank n over the field K of class C∞ is a fibre bundle (V,B,K×n, πV) with the following
properties:

● the fibre Vx ≡ π−1
V ({x}) over an arbitrary pointx ∈ B is a K-linear space;

● the restrictions of diffeomorphisms of class C∞ (local trivialisations)

pr2 ○ τi↾Vx ∶ Vx
≅ÐÐ→ K×n , x ∈ B

are isomorphisms of K-linear spaces,

and the maps defining the K-linear structure on fibres of V are of class C∞, so that – in particular
– we have a diffeomorphism

A ∶ V ×B VÐ→ V(1)

modelled on the defining binary operation An ∶ K×n ×K×n Ð→ K×n (component-wise addition)
in the sense expressed by the commutative diagram

π−1
V (Oi) ×B π−1

V (Oi) A //

τi×τi

��

π−1
V (Oi)

τi

��
(Oi ×K×n) ×Oi (Oi ×K×n)

(pr1,A
n
○pr2,4)

// Oi ×K×n

,(2)

and a family of diffeomorphisms

K× Ð→ Diffk(V) ∶ λz→ Lλ(3)

with K-linear restrictions to fibres, augmented with the K-linear map L0K , that are modelled on
the defining action `n ∶ K × K×n Ð→ K×n (component-wise multiplication in K) in the sense
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expressed by the commutative diagram

π−1
V (Oi)

Lλ //

τi

��

π−1
V (Oi)

τi

��
Oi ×K×n

idOi×`
n
λ

// Oi ×K×n

.(4)

If K = R, we speak of a real vector bundle, whereas if K = C, we have a complex vector
bundle.

The rank of the bundle is denoted as rkV. Whenever rkV = 1, the bundle is termed a line
bundle and customarily denoted as L,

K // L

πL

��
B

.

The map (of class C∞)

0V ∶ B Ð→ V ∶ xz→ τ−1
i (x,0n) , x ∈ Oi ,

is called the zero section of the vector bundle V. It is a global section of V. The set of local
sections Γloc(V) and the set of global sections Γ(V) both carry a natural (pointwise) structure
of a module over the ring C∞(B,K).

A vector subbundle of rankm of a vector bundle (V,B,K×n, πV) is a subbundle (W,B,K×m,
πV↾W), m < n of the latter fibre bundle with the additional property: over an arbitrary point x ∈ B
in the base, its fibre Wx ⊂ Vx is a K-linear subspace.

Amorphism of vector bundles (over the field K) (VA,BA,K×nA , πVA), nA ∈ N, A ∈ {1,2}
is a fibre-bundle morphism

(Φ, f) ∶ (V1,B1,K×n1 , πV1)Ð→ (V2,B2,K×n2 , πV2)
whose restriction to the fibre V1x over an arbitrary point x ∈ B1 in the base,

Φ↾V1x
∶ V1x Ð→ V2f(x) ,(5)

is a K-linear map. The rank of the vector-bundle morphism (Φ, f) is the map

rk (Φ, f) ∶ B1 Ð→ N ∶ xz→ rk (Φ↾V1x
) .

The canonical example of a vector bundle is the tangent bundle TM Ð→ M over a smooth
manifold M . Its rank is equal to the dimension of M .

An elementary structural property of vector bundles is stated in

Theorem 1. Adopt the hitherto notation. A vector bundle (V,B,K×n, πV) of rank n ∈ N is
globally trivial, i.e., isomorphic with the bundle (B ×K×n,B,K×n,pr1), iff there exist n global
sections σk ∈ Γ(V), k ∈ 1, n which are linearly independent, i.e., such that, over every point x ∈ B
of its base, the vectors σk(x) ∈ Vx, k ∈ 1, n defined by them are linearly independent.

Proof: Left to the Reader as an easy exercise. �

Staying in the context defined by the last theorem, we readily establish the following geomet-
ric counterpart of the Steinitz Exchange Lemma:

Proposition 1. Adopt the hitherto notation and consider a vector bundle (V,B,K×n, πV) of rank
n ∈ N. Given m ≤ n linearly independent local sections σk, k ∈ 1,m of V over an open subset
O ⊆ B of the base B, there exists an open subset U ⊆ O and local sections σl ∈ Γ(V↾U), l ∈m + 1, n

which compose a linearly independent set {σj}j∈1,n of local sections over U together with the
fomerly introduced ones and thus determine a trivialisation of V↾U .
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Proof: Left to the Reader as an easy exercise. �

The last result prepares us for the proof of the following fundamental theorem which constitutes
the point of departure of our subsequent physics-oriented discussion.

Theorem 2. Adopt the notation of Def. 1 and let (Φ, f) ∶ (V1,B1,K×n1 , πV1)Ð→ (V2,B2,K×n2 , πV2)
be a morphism of vector bundles VA, A ∈ {1,2} of a constant rank rk (Φ, f) ≡ r ∈ N. Its kernel

Ker (Φ, f) ∶= ⋃
x∈B1

ker (Φ↾V1x
)

carries a canonical structure of a vector subbundle of the domain V1, and satisfies

rk Ker (Φ, f) = n1 − r .

Proof: Clearly, at an arbitrary point x ∈ B, we obtain an isomorphism

(πV1↾Ker (Φ,f))−1({x}) ≅ K×n1−r

by the purely algebraic dimension count. Furthermore, the subset Ker (Φ, f) ⊂ V1 carries the
structure of a topological subspace of the topological space (V,T (V)) on which we should, first,
find a submanifold atlas. We do that with the help of Prop. 1. To this end, we choose (arbitrarily)
open neighbourhoods: O1 containing x1 ∈ B1 and O2 ⊃ f(O1) containing f(x1) ∈ B2 that
support the respective local trivialisations

τOA ∶ π−1
VA(OA)

≅ÐÐ→ OA ×K×nA , A ∈ {1,2} .
These enable us to present the morphism (Φ, f) as

Φ21 ≡ τO2 ○Φ ○ τ−1
O1

∶ O1 ×K×n1 Ð→ O2 ×K×n2 ∶ (x, v)z→ (f(x), LΦ(x)(v))
for some smooth map

LΦ ∶ O1 Ð→ K(n2) ∶ xz→ LΦ(x)
of rank

rkLΦ(x) = r .
Consider decompositions

K×n1 = KerLΦ(x1)⊕∆1 , K×n2 = ImageLΦ(x1)⊕∆2 ,

written for some direct-sum complements ∆A ⊂ K×nA of the respective dimensions

dimK ∆1 = n1 − dimK KerLΦ(x1) = dimK ImageLΦ(x1) = n2 − dimK ∆2 .

In view of the obvious relation

∆1 ≅ ImageLΦ(x1) ,
we may, next, construct a family, indexed by O1 ∋ x, of K-linear maps

Λ̃Φ(x) ∶ K×n1 ⊕∆2 ≡ KerLΦ(x1)⊕∆1 ⊕∆2 Ð→ KerLΦ(x1)⊕ ImageLΦ(x1)⊕∆2

≡ KerLΦ(x1)⊕K×n2

∶ (k, δ1, δ2)z→ (k,0ImageLΦ(x1), δ2) +⊕ (0, LΦ(x))(k, δ1) ,
that contains the manifestly invertible member

Λ̃Φ(x1) = idKerLΦ(x1) ⊕LΦ(x1)↾∆1
⊕ id∆2 .

Since invertible maps compose an open subset in HomK(K×n1⊕∆2, KerLΦ(x1)⊕K×n2) (to wit, the
complement of the preimage of the closed set {0K} along the continuous map det(n1+dimK ∆2)),
the element Λ̃Φ(x1) belongs to this subset together with some open neighbourhood U whose
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preimage along the (continuous) map Λ̃Φ is an open neighbourhood V1 ≡ Λ̃−1
Φ (U) ∋ x1 with the

property V1 ⊂ O1. Thus, alongside the smooth map

ΛΦ ≡ Λ̃Φ↾V1
∶ V1 Ð→ IsoK(K×n1 ⊕∆2,KerLΦ(x1)⊕K×n2) ,

we also have the smooth (pointwise, at each x ∈ V1) inverse thereof,

VΦ ≡ Inv ○ΛΦ ∶ V1 Ð→ IsoK(KerLΦ(x1)⊕K×n2 ,K×n1 ⊕∆2) ,
Take an arbitrary vector

(k, δ1) ∈ KerLΦ(x1)⊕∆1 ≡ K×n1 .

Upon fixing x ∈ V1, we conclude that

(k, δ1) ∈ KerLΦ(x) ⇐⇒ ΛΦ(x)(k, δ1,0∆2) = (k,0∆1 ,0∆2)

⇐⇒ (k, δ1,0∆2) = VΦ(x)(k,0∆1 ,0∆2) .
Taking into account the canonical injections:

KerLΦ(x1) ∶ KerLΦ(x1)↣ KerLΦ(x1)⊕K×n2

and

K×n1 ∶ K×n1 ↣ K×n1 ⊕∆2 ,

we may, therefore, write

K×n1 (KerLΦ(x)) ⊆ VΦ(x)(Image KerLΦ(x1)) ,
but also

dimK K×n1 (KerLΦ(x)) = dimK KerLΦ(x) = n1 − dimK ImageLΦ(x)

= n1 − dimK ImageLΦ(x1) = dimK KerLΦ(x1) = dimK Image KerLΦ(x1)

≡ dimK VΦ(x)(Image KerLΦ(x1)) ,
the latter equality being a consequence of the invertibility of VΦ(x). Hence,

K×n1 (KerLΦ(x)) = VΦ(x)(Image KerLΦ(x1)) ,
from which we infer that the K-linear map

µx ∶ KerLΦ(x1)Ð→ ker (Φ↾V1x
) ∶ k z→ τ−1

O1
(x,pr1,2 ○ VΦ(x)(k,0ImageLΦ(x1),0∆2))

is an isomorphism, with the inverse

µ−1
x ∶ ker (Φ↾V1x

)Ð→ KerLΦ(x1) ∶ τ−1
O1

(x, v)z→ pr1 ○ΛΦ(x)(v,0∆2) .
Accordingly, for a given basis {kj}j∈1,n1−r

of KerLΦ(x1), the maps

σj ∶ V1 Ð→ V1 ∶ xz→ µx(kj)
compose a family of n1 − r linearly independent smooth sections of V1↾V1

, which – in virtue of
Prop. 1 – may be extended, over some W1 ⊆ V1, to a local basis {σi}i∈1,n1 of Γ(V1↾W1

). Invoking
Thm. 1, we associate with the latter a (new) trivialisation of V1 over W1 ∋ x,

τW1 ∶ π−1
V1

(W1)
≅ÐÐ→W1 ×K×n1 ∶ Lλi(σi(x))z→ (x, (λ1, λ2, . . . , λn1)) ,

in which

τW1
(Ker (Φ, f) ∩ π−1

V1
(W1))

= { (x, (λ1, λ2, . . . , λn1−r,0,0, . . . ,0)) ∣ x ∈W1 ∧ λj ∈ K , j ∈ 1, n1 − r } ≅W1 ×K×n1−r .

When combined with a local atlas on the base, this yields the desired submanifold atlas on
Ker (Φ, f), which proves that the latter is, indeed, an embedded submanifold of V1.
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It now suffices to establish local trivialisations of Ker (Φ, f) that give it a structure of a vector
subbundle. This we readily achieve over V1 with the help of the µx. Indeed, we have the smooth
map

τ−1
V1

∶ V1 ×KerLΦ(x1)Ð→ Ker (Φ, f)↾V1
∶ (x, k)z→ µx(k)

which is none other than the smooth inverse of the sought-after trivialisation (likewise smooth)

τV1 ∶ Ker (Φ, f)↾V1
Ð→ V1 ×KerLΦ(x1) ∶ τ−1

O1
(x, v)z→ (x,µ−1

x (v)) .
�

We find the following important application of the above result:

Corollary 1. Adopt the hitherto notation, and in particular that of Thm. 2, and let (E,B, F, πE)
be a fibre bundle. The kernel of the vector-bundle epimorphism

(TπE , πE) ∶ TE Ð→ TB

is a vector subbundle

(VE ≡ Ker (TπE , πE),E,K×dimF , π)
of the tangent bundlej TE. We call it the vertical (sub)bundle over E. Its fibre VpE ≡ (VE)p
over p ∈ E, termed the vertical (sub)space, is spanned on vertical vectors.

Proof: Left to the Reader as an easy exercise. �

We close the ancillary section by introducing one of the basic algebraic operations on vector
spaces that lift to the category of vector bundles, to wit, the physically all-important fibred direct
sum, described in

Definition 2. The Whitney sum of vector bundles (Vα,B,K×nα , πVα), α ∈ {1,2} over K,
with a common base B is the vector bundle

(V1 ⊕K,B V2 ≡ V1 ×B V2,B,K×n1 ⊕K×n2 ≡ K×n1+n2 , πV1 ○ pr1↾V1×BV2
) ,

where V1 ×B V2 is the fibred product of manifolds Vα, α ∈ {1,2} described by the commutative
diagram

V1 ×B V2

pr1↾V1×BV2

||

pr2↾V1×BV2

""
V1

πV1

""

V2

πV2

||
B

and endowed with the structure of a submanifold smoothly embedded in the product manifold
V1 ×V2, in conformity with the statement of Thm.Niezb-4.

Remark 1. The fibre of the Whitney sum over an arbitrary point x ∈ B takes the form

(V1 ⊕K,B V2)x ≡ V1x ⊕V2x ,

and so the Whitney sum is a natural adaptation of the construction of the direct sum of vector
spaces in the geometric category of vector bundles.

Alternatively, the bundle may be described – along the lines of the Clutching Theorem – in
terms of local data of its components, i.e., a common trivialising cover O = {Oi}i∈I of the bundles
Vα, α ∈ {1,2} (obtained, e.g., through common refinement of respective trivialising covers) to-
gether with the associated transition maps gαij ∶ Oij Ð→ GLK(nα), (i, j) ∈ I×2. Transition maps of
the Whitney sum of the two bundles, associated with the same trivialising cover and constituting
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the point of departure of the reconstruction of (the equivalence class of) the bundle V1 ⊕K,B V2,
read

g1⊕2
ij ∶= g1

ij ⊕ g2
ij ∶ Oij Ð→ GLK(n1)⊕GLK(n2) ⊂ GLK(n1 + n2) .

Introduction to the theory of connection on fibre bundles

The study of the tangential structure and applications of fibre bundles – from investigation of
their topology (differential topology, variational problems etc.) to physical modelling using these
geometric objects (the "dynamics" of sections described by a variational principle for a distin-
guished action functional defined on the set of global sections, the gauging of global symmetries
of the physical model, the description of the gravitational resp. electromagnetic background of the
dynamics of a charged material point and of fluctuations of that background etc.) – often requires
us to give a rigorous meaning to the differentiation of sections of a fibre bundle1, i.e., to provide
a definition of the derivative which, in analogy with that of the standard differentiation (e.g., the
directional derivative) of the algebra of functions on a manifold, would assign to a section of class
Ck a new section of class Ck−1, with analogous covariance poperties with respect to the choice of
local trivialisations and compatible with potential additional structure on the space of sections and
on the fibre (e.g., the structure of a module over the ring of smooth functions on the base or that
of the torsor of the structure group). Unfortunately, the most obvious definition of a derivative of
a section σ ∈ Γloc(E) of a fibre bundle E over a base B along a vector field V ∈ X(B), that is its
directional derivative

(V, σ)z→ Tσ(V) ,
does not yield objects tensorially (tangentially) covariant with respect to transition maps over
intersections of elements of a trivialising cover in general, nor does it accomodate the extra in-
formation encoded in local trivialisations E↾O ≅ O × F whose existence entails the tangential
splitting T(E↾O) ≅ TO × TF . Of course, the above differentiation is a local operation, and so we
may always choose a distinguished local chart on the total space of the bundle adapted to a local
trivialisation, and subsequently look for the desired objects in it (employing the decomposition
of T(E↾O) and, potentially, some additional structure on the tangent bundle over the typical
fibre, such as, e.g., the metric-tensor field), but then we leave open the question of their global
differential-geometric status.

Restricting our considerations to the category of vector bundles, we may try to circumnavigate
the difficulties met by noting that the tangent bundle TVx over the fibre Vx over a fixed point
x ∈ B in the base, embedded in the codomain TV of the map Tσ, carries – over every point in the
fibre – a linear structure isomorphic with Vx, which enables us to identify vertical vector fields on
V with sections of the bundle V. In the light of this remark, it suffices to project Tσ(V) onto that
tangent bundle, which, however, requires existence of a decomposition of the tangent bundle over
the total space V into a Whitney sum of the vertical subbundle and its complement. Under a local
trivialisation of the vector bundle V, the projection alluded to above can be defined naturally and
yields the expected result. The original difficulty translates into the difficulty with establishing
relations (transition maps) between the local objects. Thus, while the hitherto discussion indicates
quite clearly the properties that the sought-after solution to the problem posed should possess,
our attempts at a direct solution meet with various difficulties (cp also: later lectures in which
we pass to render the differentiation compatible with any extra structure on the fibre). Below,
we address each and every one of them separately, which leads us to several seemingly different
definitions of a structural derivative of a section along a vector field on the base. Their equivalence,
to be demonstrated towards the end of our discussion, will provide us with a solid a posteriori
confirmation of the adequacy and naturality of the chosen path of formalisation of the geometric
intuitions employed.

Remark 2. All considerations in the set of lectures on (compatible) connections are placed in the
category of smooth manifolds (i.e., those of class C∞). In particular, the base fields K ∈ {R,C}

1The necessity becomes obvious if we think of those sections as objects modelling physical fields over a spacetime.
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of the vector bundles discussed implicitly carry the natural differential structur, and the structure
groups of the principal bundles contemplated are Lie groups.

We commence our discussion with

Definition 3. Let (E,B,F, πE) be a fibre bundle. Consider a path of class C1

γ ∶ ] − ε, ε[Ð→ B , ε > 0 .

A parallel transport (of class C∞) in E along γ is a family of smooth diffeomorphisms

Pγt1,t2 ∶ Eγ(t1)
≅ÐÐ→ Eγ(t2) , t1, t2 ∈] − ε, ε[

with the following properties:
(PT1) the mapping (in whose definition the fibred product is associated with the pair (γ ○

pr1, πE))

Pγ⋅,⋅ ∶ ] − ε, ε[×2×BE Ð→ E ∶ ((t1, t2), x)z→ Pγt1,t2(x)
is of class C∞;

(PT2) Pγt1,t1 = idEγ(t1) ;
(PT3) ∀t1,t2,t3∈]−ε,ε[ ∶ Pγt2,t3 ○ P

γ
t1,t2

= Pγt1,t3 ;
(PT4) given any section σ ∶ Ox Ð→ E defined on some open neighbourhood Ox of the point

x ∈ B, its covariant derivative at x along an arbitrary vector field V ∈ X(Ox), given by
the formula

∇Vσ(x) ∶= d
dt
↾t=0(Pγ0,t)

−1 ○ σ ○ γ(t) ,

does not depend on the choice of the representatives of the co-tangency class of paths
through x determined by the conditions

γ(0) = x ∧ γ̇(0) = V(x) ;

(PT5) the map

∇⋅σ ∶ TOx Ð→ VE ⊂ TE

is C∞(Ox,R)-linear.
Whenever there exists a parallel transport for any path γ in a neighbourhood of an arbitrary
point x ∈ B, we say that a connection on fibres (of class C∞) of the fibre bundle E has
been established.

An elementary consequence of the existence of a parallel transport is stated in

Proposition 2. Adopt the notation of Def. 3. If there exists a parallel transport for any path
in B, then at any point p ∈ E in the fibre Ex over an arbitrary point x ∈ B , there exists a
monomorphism of class C∞

Horp ∶ TxB ↣ TpE(6)

uniquely defined by its property

Horp(γ̇(0)) = d
dt
↾t=0P

γ
0,t(p) ,(7)

written for any path γ satisfying the condition γ(0) = x, the latter implying the identity

Tpπ ○Horp = idTπE(p)B
.(8)

Furthermore, the tangent space TpE decomposes as

TpE = VpE ⊕ Image Horp .

The map Horp is termed the horizontal lift of vectors from the base to the fibre.
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Proof: We begin by stressing that formula (7) does, indeed, determine Horp uniquely in view of
arbitrariness of the vector tangent to a path at a given point in the base. Hence, it suffices to check
the desired properties of the expression on the right-hand side of the equality. With that in mind,
we note that the family Pγt1,t2 , t1, t2 ∈]−ε, ε[ of diffeomorphisms defined for a path with a nowhere
vanishing tangent vector γ̇ (for a sufficiently small ε) induces a (locally) smooth vector field Y
over γ(] − ε, ε[) with the flow (or, equivalently, with the local group of local diffeomorphisms)

ΦY ∶ ] − ε, ε[×π−1
E (γ(] − ε, ε[))Ð→ π−1

E (γ(] − ε, ε[))

∶ (t, p)z→ Pγ
γ−1○πE(p),t

(p) ≡ ΦY(t, p) ,
satisfying the obvious identity

ΦY(γ−1 ○ πE(p), p) = p ,
and the vector field Y itself obeys

Y(p) = d
dt
↾t=γ−1○πE(p) ΦY(t, p) .

Consider, next, an arbitrary local section

σ ∶ Ox Ð→ E , πE ○ σ = idOx

with the property

σ ○ γ(0) ≡ σ(x) = p ,
which entails

ΦY(0, p) ≡ ΦY(γ−1 ○ πE(p), p) = p ≡ idE(p) .
Its covariant derivative at x along the vector field tangent to γ,

∇γ̇σ(x) ≡ d
dt
↾t=0 P

γ −1
0,t (σ ○ γ(t)) ,

can be computed with the help of the following manipulation

Txσ(γ̇(0)) ≡ d
dt
↾t=0 P

γ
0,t(P

γ −1
0,t (σ ○ γ(t))) = d

dt
↾t=0 ΦY(t,Pγ −1

0,t (σ ○ γ(t)))

= D1ΦY(0,Pγ −1
0,0 (σ ○ γ(0))) +D2ΦY(0,Pγ −1

0,0 (σ ○ γ(0)))(∇γ̇σ(x))

= Y(Pγ −1
0,0 (σ ○ γ(0))) +TPγ −1

0,0 (σ○γ(0))idE(∇γ̇σ(x))

≡ Y(σ(x)) + idTσ(x)E(∇γ̇σ(x)) = Y(p) +∇γ̇σ(x)
which yields

Y(p) = Txσ(γ̇(0)) −∇γ̇σ(x) ,
and so also

Horp(γ̇(0)) = d
dt
↾t=0 P

γ
0,t(p) ≡ d

dt
↾t=0 ΦY(t, p) = Y(p) = Txσ(γ̇(0)) −∇γ̇σ(x) .

Thus, we see that directly by the definition of the covariant derivative (and that of the tangent
mapping) the map Horp is R-linear and depends on the choice of the path through γ̇(0) (oraz
γ(0) = x) exclusively. It is also injective as, on the one hand,

∇γ̇σ(x) ∈ VpE ,
and, on the other hand,

Txσ(γ̇(0)) ∈ VpE ⇐⇒ γ̇(0) ≡ Tσ(x)π ○Txσ(γ̇(0)) = 0Tσ(x)E ,

and therefore

Txσ(γ̇(0)) −∇γ̇σ(x) ∈ VpE ⇐⇒ Txσ(γ̇(0)) ∈ VpE

⇐⇒ γ̇(0) = 0TxB ,
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or

Image Horp ∩VpE = {0TpE} .

The above implies a chain of relations between R-linear spaces (we are dealing with the internal
direct sum here)

Image Horp ⊕VpE = Image Horp +TpE VpE ⊂ TpE ,

and since – in virtue of injectivity of Horp, which makes it an isomorphism onto its image – the
equality

dimR (Image Horp ⊕VpE) = dimR Image Horp + dimRVpE = dimRTxB + dimF

= dimB + dimF = dimE ≡ dimRTpE

holds true, we obtain the relation

Image Horp ⊕VpE = TpE .

The identity (8) follows directly from the expression for Horp(γ̇(0)) derived above. �

An alternative take on a connection is presented in

Definition 4. An Ehresmann connection on a fibre bundle (E,B,F, πE) is a choice of a vector
subbundle HE ⊂ TE of the tangent bundle over the total space E that complements the vertical
bundle VE in the tangent bundle TE as

TE = VE ⊕B HE .

The subbundle HE is called a horizontal (sub)bundle over E. Its fibre HpE ≡ (HE)p over
p ∈ E, termed the horizontal (sub)space, is spanned on horizontal vectors.

Equivalence between the two definitions of a connection is stated in

Theorem 3. A connection on fibres of a fibre bundle determines an Ehresmann connection on it,
and vice versa.

Proof: The first claim follows directly from Prop. 2 the dependence of Horp on the point p ∈ E is
– by construction – smooth (as the dependence of the smooth vector field Y on the point in its
support), and so we have an unabmiguous smooth splitting of an arbitrary vector field V on E
into components

V = (idTE −Hor⋅ ○Tπ)(V) +Hor⋅ ○Tπ(V) ,

of which the former is vertical by Eqn. (8),

Tπ((idTE −Hor⋅ ○Tπ)(V)) = Tπ(V) − (Tπ ○Hor⋅) ○Tπ(V) = Tπ(V) −Tπ(V) = 0TE .

Clearly, the pair (idTE −Hor⋅ ○Tπ,Hor⋅ ○Tπ) is a complete family of complementary projections,
and as such it defines the sought-after Whitney-sum decomposition of TE.

Conversely, an Ehresmann connection TE = VE ⊕B HE uniquely defines a smooth lift

Hor⋅ ∶= (Tπ↾HE)−1 ∶ TB
≅ÐÐ→ HE ⊂ TE ,(9)

and the latter permits us – in virtue of the theorem on uniqueness of the integral curve of a
vector field through a given point in its domain – to associate, with an arbitrary smooth path
γ ∶ ] − ε, ε[Ð→ B though x ≡ γ(0) ∈ B, the horizontal lift of that path γ̃p ∶ ] − ε, ε[Ð→ E
through an arbitrary point p ∈ Ex, i.e., an integral curve of the vector field Horγ(γ̇) that solves
the initial-value problem

˙̃γp(t) = Horγ̃p(t)(γ̇(t)) , γ̃p(0) = p .(10)
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Upon lifting γ to all points in the fibre Ex, we obtain a family of smooth diffeomorphisms between
that fibre and fibres in some neighbourhood thereof,

Pγ0,t ∶ Ex
≅ÐÐ→ Eγ(t) ∶ pz→ γ̃p(t) .(11)

Their smoothness is ensured by the smooth dependence of the flow of the vector field Horγ̃p(γ̇)
on the initial condition p (following, in turn, from the smooth dependence of Horγ̃p on p), and
the local uniqueness of the solution to the above initial-value problem guarantees bijectivity of the
maps Pγ0,t. Finally, the superposition law (PT3) of Def. 3, as well as the initial condition (PT2),
emerge directly from the construction of the flow of the smooth vector field (on the basis of the
correspondence with local groups of local diffeomorphisms). Thus, it remains to consider the
covariant derivative defined by the thus established connection on fibres of E. Reasoning as in the
proof of Prop. 2, we compute

∇γ̇σ(x) ≡ d
dt
↾t=0 P

γ −1
0,t (σ ○ γ(t)) = −Horσ(x)(γ̇(0)) +Tσ(x)P

γ −1
0,0 ( d

dt
↾t=0 σ ○ γ(t))

= −Horσ(x)(γ̇(0)) +Txσ(γ̇(0)) ,(12)

and hence conclude that the derivative depends on the path γ employed in its definition solely
through γ̇(0) (and γ(0) = x), and on the field γ̇ – in a manifestly C∞(B,R)-linear manner, in
conformity with the axiom (PT4) of Def. 3. �

On the basis of the interpretation of the Whitney sum as a geometrisation of the direct sum
of vector spaces, and with the help of the equivalent description of that structure in terms of a
complete family of complementary projections, we infer that the description of a connection on a
fibre bundle that uses the decomposition of the tangent bundle over the total space of that bundle
into a (Whitneya) sum of subbundles: the vertical one and the horizontal one carries in itself a
hint as to another natural reformulation of the definition of a connection. Thus, we arrive at

Definition 5. A connection form on a fibre bundle (E,B,F, πE) is a C∞(B,R)-linear mor-
phism of vector bundles

(A, idE) ∶ TE Ð→ VE

with the property expressed by the commutative diagram

VE
VE //

idVE

TE

A

��
VE

in which VE is the canonical injection.

Also this time, we readily verify equivalence of the definitions.

Theorem 4. An Ehresmann connection on a fibre bundle canonically determines a connection
form and vice versa.

Proof: An Ehresmann connection TE = VE ⊕B HE induces a (C∞(B,R)-linear) vector-bundle
epimorphism

A ∶= idTE − (TπE↾HE)−1 ○TπE ∶ TE ↠ VE ,

giving a smooth distribution of projections onto the fibre of the first component of the Whitney
sum. For any vertical vector field V, we obtain

A(V) ≡ idTE(V) − (TπE↾HE)−1 ○TπE(V) = V +TE 0TE = V .
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Conversely, to any vector-bundle morphism A ∶ TE Ð→ VE with the property A↾VE = idVE ,
we may – in virtue of Thm. 2 – associate the vector subbundle

HE ∶= Ker(A, idB) ⊂ TE .

For any v ∈ HpE ∩VpE, p ∈ E, we obtain the result

v = idVE(v) = A(v) = 0TpE ,

and so

HE ∩VE = {0TE} .
At the same time, any vector field V on E splits as

V = (idTE −A)(V) +A(V)
with the smooth components taking values in the respective subbundles:

A(V) ∶ E Ð→ VE

and

V −A(V) ∶ E Ð→ HE ,

which follows from the identity

A(V −A(V)) = A(V) −A↾VE(A(V)) = A(V) − idVE(A(V)) = A(V) −A(V) = 0TE .

�

Remark 3. We conclude the general discussion of the construction of a connection on a fibre
bundle with a formulation of its local description using local trivialisations τi ∶ π−1

E (Oi)
≅ÐÐ→

Oi × F, i ∈ I of the bundle, associated with an open cover O = {Oi}i∈I , and with transition
maps gij ∶ Oij Ð→ Aut(F ). Our detailed analysis shall be carried out in local coordinates:
(xµ, ξA), µ ∈ 1,dimB, A ∈ 1,dimF on a neighbourhood of (x, f) ≡ (πTOij(X), πTF (V )) ∈ Oij ×F
and (yµ ≡ xµ, ζA) on a neighbourhood of (x, gij(x)(f)) ∈ Oij ×F . The trivialisations of E induce
the local tangential trivialisations

Tτi ∶ Tπ−1
E (Oi)

≅ÐÐ→ T(Oi × F ) ≅ pr∗1TOi ⊕Oi×F,R pr∗2TF .

Introducing coordinate bases in the relevant tangent spaces, let us denote

Ttij ≡ Tτi ○ (Tτj)
−1 ∶ T(Oij × F )↺ ∶ ((x, f),X + V )z→ ((x, gij(x)(f)), X̃ + Ṽ ) ,

X ≡Xµ ⊳ ∂
∂xµ

(x) , V ≡ V A ⊳ ∂
∂ξA

(f) ,

X̃ ≡ X̃µ ⊳ ∂
∂yµ

(x) , Ṽ ≡ Ṽ A ⊳ ∂
∂ζA

(gij(x)(f)) ,
and use the identitites

t∗ijdy
µ(x, f) = ∂yµ

∂xν
(x) ⊳ dxν(x) = δµν ⊳ dxν(x) = dxµ(x)

and

t∗ijdζ
A(x, f) = ∂ζA

∂xµ
((gij(x)(f)) ⊳ dxµ(x) + ∂ζA

∂ξB
((gij(x)(f)) ⊳ dξB(f)

to derive

X̃ ≡ T(x,f)tij(X + V ) ⌟ dyµ(x) ⊳ ∂
∂yµ

(x) = (X + V ) ⌟ t∗ijdyµ(x, f) ⊳ ∂
∂xµ

(x)

= (X + V ) ⌟ dxµ(x) ⊳ ∂
∂xµ

(x) =X ⌟ dxµ(x) ⊳ ∂
∂xµ

(x) ≡X
and

Ṽ ≡ T(x,f)tij(X + V ) ⌟ dζA(gij(x)(f)) ⊳ ∂
∂ζA

(gij(x)(f))
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= (X + V ) ⌟ t∗ijdζA(gij(x, f) ⊳ ∂
∂ζA

(gij(x)(f))

= (Xµ ∂ζA

∂xµ
((gij(x)(f)) + V B ∂ζA

∂ξB
((gij(x)(f))) ⊳ ∂

∂ζA
(gij(x)(f)) .

In what follows, we use the symbol $i (resp. $ij) for the projection onto the second direct sum-
mand, TF , in the Whitney-sum decomposition of the tangent bundle T(Oi×F ) ≅ pr∗1TOi⊕Oi×F,R
pr∗2TF (resp. of T(Oij × F ) ≅ pr∗1TOij ⊕Oi×F,R pr∗2TF ).

In order to proceed with our computation, we need to make additional assumptions with regard
to the group Aut(F ) in which the transition maps gij take values. From now onwards, we
presuppose that the ditinguished elements gij(x) of Aut(F ) belong to some (finite-dimensional)
Lie (sub)group G ⊂ Aut(F ), which happens to be true in the cases of physical interest: in that of
a vector bundle n over the base field K, we are dealing with the general linear group GL(n;K),
whereas in those of a principal bundle and bundles associated with it – with the structure Lie
group. The assumption permits us to employ the detailed knowledge, gathered during Lectures 4.
and 5., on the differential calculus on a group manifold and on a manifold with a Lie-group action,
compatible with the natural group action.

Consider a local section

σ ∶ O Ð→ E

and pick up a point x ∈ O∩Oij . In the local picture, we define a map σi ∶ Oi Ð→ F of class C∞

as follows:

τi ○ σ(x) =∶ (x,σi(x)) ,
noting the identity

(x,σj(x)) ≡ τj ○ σ(x) = τj ○ τ−1
i (τi ○ σ(x)) = τj ○ τ−1

i (x,σi(x)) = (x, gji(x)(σi(x)))
from which we derive the transformation rule for the mappings σi on O ∩Oij ,

σj(x) = gji(x)(σi(x)) ≡ δgji(x)(σi(x)) .
Above, we have used the symbol δ⋅ ∶ G×F Ð→ F to denote the (defining) action of the Lie group
G ⊂ Aut(F ) on F . The objects intriduced heretofore enable us to quantify, in the local picture,
the correction to the natural vertical differentiation Tσi of the section σ sourced by the covariant
derivative. Thus, for an arbitrary vector field V ∈ X0(O) attaining the value V ≡ V(x) at the
point x ∈ O ∩Oi, we define

V ⌟ αi(x,σ(x)) ∶=$i ○Tτi(∇Vσ)(x) −Txσi(V ) ,(13)

where

αi(⋅, σ(⋅)) ∈ T∗⋅ Oi ⊗R T⋅F ⊂ T∗⋅ Oi ⊗R T(⋅,σ(⋅))(Oi × F )
is a measure of the discrepancy between the covariant derivative and Tσi. The latter object may
also be regarded equivalently as an element of the space Ω1(Oi)⊗R TF , and whenever we do so,
we denote it suggestively as dσi. In this convention, we write

$i ○Tτi(∇Vσ)(x) = V ⌟ (dσi(x) + αi(x,σ(x))) .
Clearly, the criterion, implicitly invoked above, of naturality of the choice Tσi of the reference
derivation has limited strength. A decent justification for the adopted decomposition of the covari-
ant derivative into parts that depend on σi "tangentially" resp. "functionally" shall be provided
only by a detailed discussion of a connection compatible with an extra structure on the fibre and
of its physical applications, to be launched during future lectures. Meanwhile, let us investigate
transformation properties of the local objects αi displayed in transition between different local
trivialisations over intersections of the respective domains. Thus, at an arbitrary point x ∈ O∩Oij ,
we obtain the identity

V ⌟ (dσi(x) + αi(x,σ(x))) ≡ $ij ○Tτi(∇Vσ)(x) =$ij ○Ttij ○Tτj(∇Vσ)(x)

= V ⌟ (idT∗B ⊗Tσj(x)δgij(x))(dσj(x) + αj(x,σ(x))) ,
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that is – in view of the arbitrariness of V –

(idT∗B ⊗Tσj(x)δgij(x))αj(x,σ(x)) − αi(x,σ(x))

= dσi(x) − (idT∗B ⊗Tσj(x)δgij(x))dσj(x)

= dσi(x) − (idT∗B ⊗Tσj(x)δgij(x))d(δgji(x)(σi(x))) .

In order to avoid confusion at later stages of our analysis, we emphasise: Tσj(x)δgij(x) is the
tangent of the diffeomorphism δgij(x) ∶ F ↺ at the point σj(x) in the latter’s domain, whereas
d(δgji(x)(σi(x))) is (a presentation of) the tangent of δgji(⋅)(σi(⋅)) ∶ Oij Ð→ F at the point x.
Hence, upon invoking the statement of Prop. 4.2 in conjunction with the natural presentation of
the (de Rhama) exterior derivative on the Lie group G (written for an arbitrary f ∈ C1(G,R)
and at the point g ∈ G):

df(g) = LA(f)(g) ⊳ θAL (g) ≡ d
dt
↾t=0 (f ○LtAt )(g) ⊳ θAL (g)′, ,

we may write

d(δgji(x)(σi(x))) = (idT∗B ⊗Tσi(x)δgji(x))dσi(x) + θAL (gji(x))⊗R
d
dt
↾t=0 (δ

L
tA
t (gji(x))

(σi(x)))

= (idT∗B ⊗Tσi(x)δgji(x))(dσi(x) + g∗jiθAL (x)⊗R
d
dt
↾t=0 (δ

gij(x)⋅L
tA
t (gji(x))

(σi(x))))

= (idT∗B ⊗Tσi(x)δgji(x))(dσi(x) + g∗jiθAL (x)⊗R
d
dt
↾t=0 (δ

gij(x)⋅gji(x)⋅L
tA
t (e)

(σi(x))))

= (idT∗B ⊗Tσi(x)δgji(x))(dσi(x) + g∗jiθAL (x)⊗R
d
dt
↾t=0 (δ

L
tA
t (e)

(σi(x)))) ,

which – in the light of the explicit formula for the fundamental vector field from p. 5.7 – yields

d(δgji(x)(σi(x))) = (idT∗B ⊗Tσi(x)δgji(x))dσi(x) + g∗jiθAL (x)⊗R Tσi(x)δgji(x)(KtA(σi(x))) .

Based on Props. 4.9 and 5.1, we may cast the latter in the above in the form

d(δgji(x)(σi(x))) = (idT∗B ⊗Tσi(x)δgji(x))dσi(x) + g∗jiθAL (x)⊗R KTeAdgji(x)(tA)(σj(x))

= (idT∗B ⊗Tσi(x)δgji(x))dσi(x) + (TeAdgji(x))
B

A
⊳ g∗jiθAL (x)⊗R KtB(σj(x))

= (idT∗B ⊗Tσi(x)δgji(x))dσi(x) + g∗jiθBR (x)⊗R KtB(σj(x)) ,

or – upon invoking the statement of Props. 4.9 once more –

d(δgji(x)(σi(x))) = (idT∗B ⊗Tσi(x)δgji(x))dσi(x) − g∗ijθBL (x)⊗R KtB(σj(x)) .
(14)

By the end of the day, we arrive at the sought-after transformation formula

αj(x,σ(x)) = (idT∗B ⊗Tσi(x)δgji(x))αi(x,σ(x)) − g∗jiθAR(x)⊗R KtA(σj(x))

= (idT∗B ⊗Tσi(x)δgij(x)−1)αi(x,σ(x)) + g∗ijθAL (x)⊗R KtA(σj(x)) ,

of a manifestly affine nature. The formula is the point of departure for subsequent analysis taking
into account any additional algebraic structure on the fibre, which we take up in the next lecture.

Our considerations are crowned with a specialisation of the notion of a fibre-bundle morphism
in the presence of a connection, which we undertake below.

Definition 6. Adopt the notation of Defs. 3, 4 and 5 and let (Eα,Bα, Fα, πEα), α ∈ {1,2} be
fibre bundles with connection (in any one of the equivalent formulations). A morphism of fibre
bundles with connection (covering a diffeomorphism between the bases) between E1
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and E2 is a fibre-bundle morphism described by the commutative diagram

E1
Φ //

πE1

��

E2

πE2

��
B1

f
// B2

with the base component2 f ∈ Diff∞(B1,B2), subject to the following conditions:
(FCM1) for arbitrary: path γ ∶ ] − ε, ε[Ð→ B1, ε > 0 and t ∈] − ε, ε[, the identity

Φ ○ P(1)γ
0,t = P

(2)f○γ
0,t ○Φ

holds true, and then for any: (local) section σ ∶ Ox Ð→ E1 defined on some open
neighbourhood Ox of the point x ∈ B1 and vector field V ∈ X(Ox), the covariance
condition

Tσ(x)Φ(∇(1)
V
σ(x)) = ∇(2)

Tf(V)
(Φ ○ σ ○ f−1)(f(x))

is satisfied;
(FCM2) the pair (TΦ,Tf) of tangent maps restricts to the horizontal subbundles HEα, α ∈ {1,2}

and, in so doing, engenders a vector-bundle morphism described by the commutative
diagram

HE1

TΦ↾HE1 //

TπE1
↾HE1

��

HE2

TπE2
↾HE1

��
TB1

Tf
// TB2

;

(FCM3) the tangent map TΦ preserves the connection form, as expressed by the equality

TΦ ○A1 = A2 ○TΦ .

Remark 4. The covariance condition of condition (FCM1) is checked in a direct computation
(carried out using an arbitrary path γ in B1 through x = γ(0), with the tangent vector γ̇(0) =
V(x)),

Tσ(x)Φ(∇Vσ(x)) ≡ Tσ(x)Φ( d
dt
↾t=0 P

γ −1
0,t (σ ○ γ(t))) = d

dt
↾t=0 Φ ○ Pγ −1

0,t (σ ○ γ(t))

= d
dt
↾t=0 P

f○γ −1
0,t ((Φ ○ σ ○ f−1) ○ (f ○ γ)(t))

= ∇Tf(V)(Φ ○ σ ○ f−1)(f(x)) ,
the identification of the vector field along which the section Φ ○ σ is differentiated at the end of
the sequence of equalities following directly from the identity

d
dt

(f ○ γ)(t) = Tγ(t)f(γ̇(t)) .
It is the condition verified above that explains the name given to the object ∇Vσ.

It is to be noted, furthermore, with regard to condition (FCM2) that the pair (TΦ,Tf) is
always a vector-bundle morphism in virtue of the functoriality of T and only the postulate that
the horizontal subbundles should be preserved is a nontrivial condition additionally constraining
the fibre-bundle morphism (Φ, f).

2The reason to restrict our choice of the base component of the morphism is obvious: Such a restriction ensures
the existence of a natiral transport of vector fields between the bases, and so also between the horizontal subbundles.
It is possible to generalise the definition given, but we shall not pursue it here.
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Theorem 5. Adopt the notation of Def. 6. Conditions (FCM1), (FCM2) and (FCM3) are mutu-
ally equivalent.

Proof:
(FCM1)⇒ (FCM2) Using the isomorphisms

Hor(1)p ∶ TπE1
(p)B1

≅ÐÐ→ HpE1 , p ∈ E1 ,

we check – for any V ≡ γ̇(0) ∈ TπE1
(p)B1 (and at an arbitrary point p ∈ E1), and adducing

the arguments from the second part of Remark 4 –

TpΦ(Hor(1)p (V )) = TpΦ( d
dt
↾t=0 P

γ
0,t(p)) = d

dt
↾t=0 Φ ○ Pγ0,t(p) = d

dt
↾t=0 P

f○γ
0,t (Φ(p))

≡ Hor
(2)

Φ(p)
(TπE1

(p)f(V )) .

Linearity (fibrewise) of the restricted tangent morphism is a direct consequence of its
construction.

(FCM2)⇒ (FCM1) Commutativity of the diagram of condition (FCM2), with the restriction to the point
p ∈ E1x, x ∈ B1 given by

HpE1

TpΦ↾HpE1 // HΦ(p)E2

TxB1
Txf

//

Hor(1)p

OO

Tf(x)B2

Hor
(2)
Φ(p)

OO

,(15)

enables us to compute, for arbitrary paths γ̃p, p ∈ E1x lifting the path γ in B1 through
x ≡ γ(0), i.e., solving the initial-value problem (10) and defining, through that, a connec-
tion on fibres by formula (11),

d
dt
(Φ ○ γ̃p)(t) = Tγ̃p(t)Φ( d

dt
γ̃p(t)) = Tγ̃p(t)Φ ○Hor

(1)

γ̃p(t)
(γ̇(t))

= Hor
(2)

Φ○γ̃p(t)
○Tγ(t)f(γ̇(t)) = Hor

(2)

Φ○γ̃p(t)
( d
dt
(f ○ γ)(t)) .

On the other hand, directly by the definition of the horizontal lift of the path (f ○ γ in
B2 through f(x) ≡ f ○ γ(0) to Φ(p)), we obtain the equality

Hor
(2)

Φ(γ̃p(t))
( d
dt
(f ○ γ)(t)) = d

dt
(̃f ○ γ)Φ(γ̃p(0))

(t) ≡ d
dt
(̃f ○ γ)Φ(p)(t) ,

and so clearly – due to the identity of the initial points, (̃f ○ γ)Φ(p)(0) = Φ(p) = Φ ○ γ̃p(0),
and of the tangent vectors, and in virtue of the theorem on uniqueness of the integral
curve of a vector field through a given point in its domain – we have the equality

(̃f ○ γ)Φ(p) = Φ ○ γ̃p ,
which implies, at an arbitrary point p ∈ E1, the desired relation

(Φ ○ P(1)γ
0,t )(p) ≡ Φ ○ γ̃p(t) = (̃f ○ γ)Φ(p)(t) ≡ P

(2)f○γ
0,t (Φ(p)) = (P(2)f○γ

0,t ○Φ)(p) .
(FCM2)⇒ (FCM3) Upon noting that Aα is a projection onto VEα along HEα,

Aα = idTEα −Hor(α)⋅ ○TπEα , α ∈ {1,2} ,
we calculate – with reference to Diag. (15) –

TΦ ○A1 = TΦ ○ idTE1 − (TΦ ○Hor(1)⋅ ) ○TπE1 = TΦ − (Hor
(2)

Φ(⋅)
○Tf) ○TπE1

= TΦ −Hor
(2)

Φ(⋅)
○ (Tf ○TπE1

) = idTE2 ○TΦ −Hor
(2)

Φ(⋅)
○ (TπE2 ○TΦ)

≡ A2 ○TΦ .
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(FCM3)⇒ (FCM2) As HEα ≡ KerAα, α ∈ {1,2}, it suffices to show that

TΦ(KerA1) ⊂ KerA2 ,

but this follows directly from the sequence of relations

A2(TΦ(KerA1)) = TΦ(A1(KerA1)) = TΦ({0TE1}) = {0TE2} .
�


