
CLASSICAL FIELD THEORY IN THE TIME OF COVID-19
7. LECTURE BATCH

Associated bundles

The detailed discussion of the structure of principal bundles presented in the previous lecture
prepared us for the study of geometric objects of prime relevance to the modelling of the proce-
dure of rendering global symmetries of a mechanical resp. field-theoretic system local. These, we
introduce in

Definition 1. Let (PG,B,G, πPG
) be a principal bundle, and M – a manifold with a smooth

(left) action λ ∶ G ×M Ð→M of the Lie group G. A bundle associated with PG by λ is a
fibre bundle

(PG ×λM,B,M,πPG×λM)

composed of
● the total space PG×λM ≡ (PG×M)/G given by the quotient manifold determined – along
the lines of Cor. 6.2 (and based on Thm. 5.2) and in the notation introduced ibid. – by
the action of Eq. (6.2);

● the projection to the base

πPG×λM ∶ PG ×λM Ð→ B ∶ [(p,m)] z→ πPG
(p) .

Here, local trivialisations τi ∶ π−1
PG

(Oi)
≅ÐÐ→ Oi ×G, i ∈ I of the principal bundle PG associated

with the open cover O = {Oi}i∈I of the base B induce local trivialisations

τ̃i ∶ π−1
PG×λM

(Oi)
≅ÐÐ→ Oi ×M ∶ [(p,m)] z→ (πPG

(p), λpr2○τi(p)
(m)) ,

with the ensuing transition maps

τ̃i ○ τ̃−1
j ∶ Oij ×M ↺ ∶ (x,m) z→ (x,λgij(x)(m)) .

Upon fixing (arbitrarily) a point x ∈ B, we choose (also arbitrarily) p∗ ∈ (PG)x. Diffeomorphisms

[p∗]λ ∶ M ≅ÐÐ→ (PG ×λM)x ∶ mz→ [(p∗,m)] ,

with inverses

[p∗]−1
λ ∶ (PG ×λM)x

≅ÐÐ→M ∶ [(p,m)] z→ λφPG
(p∗,p)(m)

and the obvious property

∀g∈G ∶ [p∗ ⊲ g]λ = [p∗]λ ○ λg ,(1)

are called fibre-modelling isomorphisms. These induce fibre-transport isomorphisms

[p2, p1]λ ≡ [p2]λ ○ [p1]−1
λ ∶ (PG ×λM)πPG

(p1)
≅ÐÐ→ (PG ×λM)πPG

(p2)

∶ [(p,m)] z→ [(p2, λφPG
(p1,p)(m))] ,

defined for all pairs (p1, p2) ∈ PG.
For any pair (PG ×λα Mα,B,Mα, πPG×λαMα), α ∈ {1,2} of bundles associated with the same

principal bundle (PG,B,G, πPG
), we define also the associated-bundle invariant as the fibre-

bundle morphism

(Φ, idB) ∶ PG ×λ1 M1 Ð→ PG ×λ2 M2

1
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with the fundamental property expressed by the commutative diagram (written for any p1, p2 ∈ PG)

(PG ×λ1 M1)πPG
(p1)

[p2,p1]λ1 //

Φ↾
(PG×λ1

M1)πPG
(p1)

��

(PG ×λ1 M1)πPG
(p2)

Φ↾
(PG×λ1

M1)πPG
(p2)

��
(PG ×λ2 M2)πPG

(p1) [p2,p1]λ2

// (PG ×λ2 M2)πPG
(p2)

.

Remark 1. Existence of the structure of a smooth manifold on the space of orbits PG ×λM of
the action λ̃ is a direct consequence of Thm. 5.2, which can be invoked in the present context
in virtue of Cor. 6.2. Smoothness of the projection to the base πPG×λM is readily inferred from
Prop.Niezb-10, once we note that the projection closes the commutative diagram

B

PG ×M π(PG×M)/G

//

πPG
○pr1

77

PG ×λM

πPG×λM

OO

,

in which π(PG×M)/G is a surjective submersion (by the very same Thm. 5.2), and πPG
○ pr1 is

manifestly smooth. JAs the latter map is also submersive, this property is inherited by πPG×λM , a
fact that can be demonstrated directly by applying the tangent functor T to the above diagram.

We shall, next, examine the local trivialisations, beginning with a check of their well-definedness.
For that, we must verify that the value taken by the map τ̃i on the class [(p,m)] does not depend
on the choice of the representative thereof. Thus, we compute

(πPG
(p ⊲ g), λ(pr2 ○ τi(p ⊲ g), λ(g−1,m))) = (πPG

(p), λ(pr2 ○ τi(p) ⋅ g, λ(g−1,m)))

= (πPG
(p), λ(pr2 ○ τi(p) ⋅ g ⋅ g−1,m)) = (πPG

(p), λ(pr2 ○ τi(p),m)) .
Furthermore, since maps

τ i ∶ π−1
PG

(Oi) ×M Ð→ Oi ×M ∶ (p,m) z→ (πPG
(p), λpr2○τi(p)

(m)) , i ∈ {1,2}
are manifestly smooth, and related to τ̃i through the commutative diagram

Oi ×M

π−1
PG

(Oi) ×M π(PG×M)/G

//

τ i

66

π−1
PG×λM

(Oi)

τ̃i

OO

,

in which the canonical projection π(PG×M)/G is smooth by Thm. 5.2 and Cor. 6.2, we conclude that
also the maps τ̃i are smooth in virtue of Prop.Niezb-10. There is no doubt about smoothness
(also local) of their inverses

τ̃−1
i ∶ Oi ×M Ð→ π−1

PG×λM
(Oi) ∶ (x,m) z→ [(τ−1

i (x, e),m)] .
In all the hitherto considerations, we have implicitly assumed well-definedness of the definition of
the maps τ̃i and τ̃−1

i , and that calls for a separate verification – the latter justifies a posteriori
our identification of the typical fibre

π−1
PG×λM

({πPG×λM([(p,m)])}) ≅M , [(p,m)] ∈ PG ×λM
of the fibre bundle under reconstruction. We readily demonstrate the desired properties: Thus,
for any (x,m) ∈ Oi ×M , we have

τ̃i ○ τ̃−1
i (x,m) = τ̃i([(τ−1

i (x, e),m)])
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= (πPG
○ τ−1

i (x, e), λ(pr2 ○ τi ○ τ−1
i (x, e),m)) = (x,λ(e,m)) = (x,m) ,

and for [(p,m)] ∈ PG ×λM, p = τ−1
i (x, g), we obtain

τ̃−1
i ○ τ̃i([(p,m)]) = τ̃−1

i (πPG
(p), λ(pr2 ○ τi(p),m))

= [(τ−1
i (πPG

(p), e), λ(pr2 ○ τi(p),m))] = [(τ−1
i (x, e), λ(g,m))]

= [(τ−1
i (x, e) ⊲ g,m)] = [(τ−1

i (x, g),m)] ≡ [(p,m)] .

Finally, we calculate

τ̃i ○ τ̃−1
j (x,m) ≡ τ̃i ○ τ̃−1

j (πPG
○ τ−1

j (x, e), λ(pr2 ○ τj(τ−1
j (x, e)),m))

= τ̃i([τ−1
j (x, e),m]) = (x,λ(pr2 ○ τi ○ τ−1

j (x, e),m))

= (x,λ(pr2(x, gij(x)),m)) ≡ (x,λ(gij(x),m)) .

The construction of the associated bundle is, therefore, well-defined.
Let us, next, consider the map

[p∗]−1
λ ∶ (PG ×λM)x Ð→M ∶ [(p,m)] z→ λφPG

(p∗,p)(m) , p∗ ∈ (PG)x .

It is well-defined as for any representative (p̃, m̃) ∈ [(p,m)] we get

λφPG
(p∗,p̃)(m̃) = λφPG

(p∗,p) ○ λφPG
(p,p̃)(m̃) = λφPG

(p∗,p)(m) .

Moreover, it is bijective because of the implication

[p∗]−1
λ ([(p2,m2)]) = [p∗]−1

λ ([(p1,m1)]) ⇐⇒ m2 = λφPG
(p2,p1)(m1)

Ô⇒ [(p2,m2)] = [(p2, λφPG
(p2,p1)(m1))] = [(p2 ⊲ φPG

(p2, p1),m1)]

= [(p1,m1)] ,

showing injectivity of [p∗]−1
λ , and any point m ∈M may be written as

m = [p∗]−1
λ ([(p∗,m)]) ,

which testifies to the map’s surjectivity, simultaneously indicating its inverse

[p∗]λ ∶ M Ð→ (PG ×λM)x ∶ mz→ [(p∗,m)] .

Indeed, the map [p∗]λ satisfies the identities

[p∗]−1
λ ○ [p∗]λ(m) = λφPG

(p∗,p∗)(m) = λe(m) =m,

[p∗]λ ○ [p∗]−1
λ ([(p,m)]) = [(p∗, λφPG

(p∗,p)(m))] ≡ [(p∗ ⊲ φPG
(p∗, p),m)]

= [(p,m)] .

It is manifestly smooth as a superposition of the immersion (p∗, idM) ∶ M Ð→ {p∗} ×M ⊂
(PG)πPG

(p∗)×M and the surjective submersion π(PG×M)/G ∶ PG×M Ð→ (PG×M)/G. Smoothness
of [p∗]−1

λ , on the other hand, follows from Prop.Niezb-10 referred to the commutative diagram

M

(PG)x ×M
π(PG×G)/G↾(PG)x×M

//

λ(φPG
(p∗,pr1),pr2)

55

(PG ×λM)x

[p∗]
−1
λ

OO

,
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with a surjective submersion on the horizontal edge. The construction of the diffeomorphism
[p∗]−1

λ thus provides us with an independent proof of the identification of the typical fibre of the
associated bundle advanced above.

Examples 1.
(1) A vector bundle V (of rank n) can be viewed/reconstructed as a bundle associated with

the principal bundle of frames FGLV by the defining action (evaluation),

V ≅ FGLV ×ev K×n .

(2) The adjoint bundle

(AdPG ≡ PG ×Ad G,B,G, πPG×AdG) .
(3) A principal bundle PG can be realised as an associated bundle

(PG ×` G,B,G, πPG×`G) ,
where ` ∶ G×GÐ→ G is the left regular action of G on itself. The relevant fibre-bundle
isomorphism is given by

ı̃ ∶ PG ×` GÐ→ PG ∶ [(p, g)] z→ p ⊲ g ,
its smoothness following from the fact that it closes the commutative diagram

B

PG ×G π(PG×G)/G

//

r

77

PG ×` G

πPG×`G

OO

,

in which π(PG×G)/G is a surjective submersion, and r – a smooth map. The inverse ı̃ is
given, in a manifestly smooth form, by

ı̃−1 ∶ PG Ð→ PG ×` G ∶ pz→ [(p, e)] .
On the associated bundle PG ×` G, we find the right action of G given by

r̃ ∶ (PG ×` G) ×GÐ→ PG ×` G ∶ ([(p, g)], h) z→ [(p, g ⋅ h)] .
Relative to it, each fibre is a torsor. The isomorphism ı̃ is G-equivariant,

ı̃ ○ r̃([(p, g)], h) = ı̃([(p, g ⋅ h)]) = p ⊲ (g ⋅ h) = (p ⊲ g) ⊲ h = r ○ ı̃([(p, g)], h) ,
and so we do, indeed, have a principal-bundle isomorphism.

In a search for automorphisms of the associated bundle PG ×` G, we note that due to
mutual commutativity of the left `⋅ and right ℘⋅ ∶ G ×GÐ→ G ∶ (g, h) z→ g ⋅ h regular
actions the latter induces – in virtue of Prop. 1, and for any g ∈ G – an associated-bundle
invariant

Φ[rg] ∶ PG ×` G↺ ∶ [(p, h)] z→ Φ[rg]πPG
(p)([(p, h)]) ,

with

Φ[rg]πPG
(p)([(p, h)]) = [p]PG×`G ○ rg ○ [p]−1

PG×`G
([(p, h)])

= [p]PG×`G ○ rg ○ `φPG
(p,p)(h) = [p]PG×`G ○ rg(h)

= [p]PG×`G(h ⋅ g) = [(p, h ⋅ g)] ≡ r̃g([(p, h)]) ,
whence

Φ[rg] ≡ r̃g ,
and since

[(p, h)] = [(p ⊲ h, e)] ≡ ι̃−1(p ⊲ h)
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and

[(p, h ⋅ g)] = [(p ⊲ h ⋅ g, e)] = [((p ⊲ h) ⊲ g, e)] = [(rg(p ⊲ h), e)] ≡ ι̃−1 ○ rg(p ⊲ h) ,

we obtain

ι̃ ○Φ[rg] ○ ι̃−1 = rg .

It is in this sense that automorphisms Φ[rg] are induced by r⋅, and the latter can be
regarded as a model associated-bundle invariant.

The practical (e.g., physical) purpose of the construction of the associated bundle is to obtain
a smooth distribution of manifolds of a predetermined (iso)type M over a give base B (e.g., a
spacetime), endowed with a distinguished action of a fixed Lie group G (e.g., of symmetries of a
physical theory), the latter being local over the base. In other words, it is to obtain a manifold
locally modelled on O×M, O ⊂ B with an action of G locally modelled on λ. That the goal thus
defined has been attained is demonstrated convincingly in the following two propositions.

Proposition 1. Bundles associated with the given principal bundle (PG,B,G, πPG
) together with

the attendant associated-bundle invariants form the category of bundles associated with the
principal bundle PG , to be denoted as

AssBun(PG) .

The latter category is canonically equivalent to the category ManG of manifolds with a left action
of G with G-equivariant maps as morphisms.

Proof: The first part of the statement is merely an indication of the class of morphisms to be
considered, and as such, it does not require a separate proof (associated-bundle invariants can be
superposed, and the identity map is – of course – an associated-bundle invariant). Also the one-
to-one correspondence between objects of the category AssBun(PG) and G-manifolds is obvious.
Thus, the only thing that needs to be checked is the relevant bijective correspondence between
associated-bundle invariants and G-equivariant maps.

Let (Φ, idB) ∶ PG ×λ1 M1 Ð→ PG ×λ2 M2 be an associated-bundle invariant. We may define –
for some (arbitrary) point p ∈ PG – a map (manifestly smooth)

χ[Φ] ∶= [p]−1
λ2
○Φ ○ [p]λ1 ∶ M1

≅ÐÐ→ (PG ×λ1 M1)πPG
(p) Ð→ (PG ×λ2 M2)πPG

(p)
≅ÐÐ→M2 ,

which, owing to the defining property of Φ,

Φ ○ [p2]λ1 ○ [p1]−1
λ1

= [p2]λ2 ○ [p1]−1
λ2
○Φ ,

does not depend on the choice of the point p used in its definition. G-equivariance of the thus
determined maps

χ[Φ] ∈ HomG(M1,M2)

follows from a direct computation, invoking Eq. (1) and carried out for arbitrary (p, g) ∈ PG ×G,

χ[Φ] ○ λ1g ≡ [p]−1
λ2
○Φ ○ ([p]λ1 ○ λ1g) = [p]−1

λ2
○Φ ○ [p ⊲ g]λ1 ≡ ([p ⊲ g]λ2 ○ λ2g−1)

−1 ○Φ ○ [p ⊲ g]λ1

= λ2g ○ [p ⊲ g]−1
λ2
○Φ ○ [p ⊲ g]λ1 = λ2g ○ [p]−1

λ2
○Φ ○ [p]λ1 ≡ λ2g ○ χ[Φ] .

Conversely, to every map χ ∈ HomG(M1,M2), we may associate a (smooth) map

Φ[χ]πPG(p) ∶= [p]λ2 ○ χ ○ [p]−1
λ1

∶ (PG ×λ1 M1)πPG
(p) Ð→ (PG ×λ1 M2)πPG

(p)

∶ [(p,m)] z→ [(p,χ(m))] ,

depending on p ∈ PG exclusively through its projection to the base B,

Φ[χ]πPG(p⊲g) = [p ⊲ g]λ2 ○ χ ○ [p ⊲ g]−1
λ1

= [p]λ2 ○ (λ2g ○ χ ○ λ1g−1) ○ [p]−1
λ1

= [p]λ2 ○ χ ○ (λ1g ○ λ1g−1) ○ [p]−1
λ1

= [p]λ2 ○ χ ○ [p]−1
λ1

≡ Φ[χ]πPG(p) ,
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and hence defining an associated-bundle invariant given by the formula

Φ[χ] ∶ PG ×λ1 M1 Ð→ PG ×λ2 M2 ∶ [(p,m)] z→ Φ[χ]πPG(p)([(p,m)]) .

Indeed, we calculate

Φ[χ] ○ [p2, p1]λ1 ≡ ([p2]λ2 ○ χ ○ [p2]−1
λ1

) ○ ([p2]λ1 ○ [p1]−1
λ1

) = [p2]λ2 ○ χ ○ [p1]−1
λ1

= ([p2]λ2 ○ [p1]−1
λ2

) ○ ([p1]λ2 ○ χ ○ [p1]−1
λ1

) ≡ [p2, p1]λ2 ○Φ[χ] .

The two assignments given above:

HomAssBun(PG)(PG ×λ1 M1,PG ×λ2 M2) Ð→ HomG(M1,M2)

∶ (Φ, idB) z→ χ[Φ]

and

HomG(M1,M2) Ð→ HomAssBun(PG)(PG ×λ1 M1,PG ×λ2 M2)

∶ χz→ (Φ[χ], idB)

are mutually inverse, and each of them is functorial. Indeed, given a manifold M with an action
λ ∶ G ×M Ð→M , we obtain, over an arbitrary point p ∈ PG, the equality

Φ[idM ]πPG
(p) = [p]λ2 ○ idB ○ [p]−1

λ1
= [p]λ2 ○ [p]−1

λ1
= id(PG×λM)πPG

(p)
,

and so also

Φ[idM ] = idPG×λM .

Furthermore, for any pair of G-equivariant maps χα ∶ Mα Ð→ Mα+1, α ∈ {1,2} between G-
manifolds Mβ , β ∈ {1,2,3} with the respective actions λβ ∶ G ×Mβ Ð→ Mβ , we arrive at the
commutative diagram (for an arbitrary point p ∈ PG)

M1

[p]λ1 //

χ1

��
χ2○χ1

��

(PG ×λ1 M1)πPG
(p)

Φ[χ1]
πPG

(p)

ww
Φ[χ2]

πPG
(p)

○Φ[χ1]
πPG

(p)

��

M2

[p]λ2 //

χ2

��

(PG ×λ2 M2)πPG
(p)

Φ[χ2]
πPG

(p)

''
M3

[p]λ3

// (PG ×λ3 M3)πPG
(p)

,

in which commutativity of the upper (resp. lower) trapeze expresses the definition of the invariant
Φ[χ1] (resp. Φ[χ2]), and commutativity of the left and right triangles encodes definitions of the
respective superpositions of maps, and in which the identity (by definition) between the rightmost
edge and the map Φ[χ2 ○ χ1]πPG

(p) implies, in keeping with our expectations,

Φ[χ2 ○ χ1] = Φ[χ2] ○Φ[χ1] .

The same diagram convinces us of the functoriality of the inverse assignment, if only we treat the
associated-bundle invariants as given and the G-equivariant maps as associated with the latter. �



CLASSICAL FIELD THEORY IN THE TIME OF COVID-19 7. LECTURE BATCH 7

Remark 2. The term "adjoint bundle" is sometimes used, in the literature, with regard to the
particular associated bundle

(adPG ≡ PG ×TeAd g,B,g, πPG×TeAdg) ,
with the typical fibre identical with the Lie algebra g of the Lie group G.

We also have the fundamental

Proposition 2. Adopt the notation of Def. 1 and Example 1 (2). There exists a canonical struc-
ture of a bundle of groups on AdPG, locally modelled on the Lie-group structure on the typical
fibre G, i.e., there are well-defined: an associative binary operation

[M] ∶ AdPG ×B AdPG Ð→ AdPG

with a neutral element, and a unary operation

[Inv] ∶ AdPG ↺ ,

satisfying (fibrewise) the axioms of a group. This structure canonically induces the structure of
a (Fréchet–Lie) group on the space Γ(AdPG) of sections of the bundle, admitting a realisation
on the space Γ(PG ×λM) of sections of the associated bundle PG ×λM which is induced by the
mapping

[λ]⋅ ∶ AdPG ×B (PG ×λM) Ð→ PG ×λM
that satisfies (fibrewise) axioms of the action of a Lie group on a manifold and locally modelled
on λ.

Proof: Consider, first, the binary operation

[M] ∶ AdPG ×B AdPG Ð→ AdPG

∶ ([(p1, g1)], [(p2, g2)]) z→ [(p1, g1 ⋅AdφPG
(p1,p2)(g2))] ,

alongside the fibrewise assignment

[ε]πPG
(p) ∶ {●} Ð→ AdPG ∶ ● z→ [(p, e)] , p ∈ PG

and the unary operation

[Inv] ∶ AdPG ↺ ∶ [(p, g)] z→ [(p, g−1)] .

We begin by verifying that all three maps ar ewell-defined. Thus, let (p3, g3) ∈ [(p1, g1)], so that
(p3, g3) = (p1 ⊲ g13,Adg−113

(g1)) and (p4, g4) ∈ [(p2, g2)], tj. (p4, g4) = (p2 ⊲ g24,Adg−124
(g2)), where

we have used the notation gij ≡ φPG
(pi, pj), (i, j) ∈ {(1,3), (2,4)} for the sake of brevity. In

virtue of Prop. 6.1, we obtain

[(p3, g3 ⋅Adg34(g4))] = [(p1,Adg13(g3 ⋅Adg34(g4)))]

= [(p1,Adg13(Adg−113
(g1) ⋅Adg34⋅g−124

(g2)))] = [(p1, g1 ⋅Adg13⋅g34⋅g42(g2))]

= [(p1, g1 ⋅Adg12(g2))]
and

[(p3, g
−1
3 )] = [(p1,Adg13(g−1

3 ))] = [(p1,Adg13(g3)−1)] = [(p1, g
−1
1 )] .

Besides, we readily establish that the value taken by the map [ε]πPG
(p) does not depend on the

choice of the point in the fibre over πPG
(p) as for any p̃ = p ⊲ φPG

(p, p̃), we get

[(p̃, e)] = [(p ⊲ φPG
(p, p̃), e)] = [(p,AdφPG

(p,p̃)(e))] = [(p, e)] .

Our proof of the claim that the above structure is locally modelled on G boils down to demon-
strating that the fibre-modelling isomorphisms

[p∗]Ad ∶ (AdPG)
x
Ð→ G ∶ [(p, g)] z→ AdφPG

(p∗,p)(g) , x ∈ B ,
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are group homomorphisms, which we do below (for an arbitrary pair of points (p1, g1), (p2, g2) ∈
PG ×G such that p1, p2 ∈ (PG)x), invoking Prop. 6.1 along the way,

[p∗]Ad ○ [M]([(p1, g1)], [(p2, g2)]) = [p∗]Ad([(p1, g1 ⋅AdφPG
(p1,p2)(g2))])

= AdφPG
(p∗,p1)(g1 ⋅AdφPG

(p1,p2)(g2))

= AdφPG
(p∗,p1)(g1) ⋅AdφPG

(p∗,p1)⋅φPG
(p1,p2)(g2)

= AdφPG
(p∗,p1)(g1) ⋅AdφPG

(p∗,p2)(g2)

≡ M([p∗]Ad([p1, g1]), [p∗]Ad([p2, g2])) .

The first step towards a reconstruction of the fibrewise action of the group Γ(AdPG) on the
space Γ(PG ×λM) consists in identifying the following left action of the adjoint bundle on PG:

[r]⋅ ∶ AdPG ×B PG Ð→ PG ∶ ([(p, g)], p̃) z→ rAdφPG (p̃,p)(g)(p̃) .

The latter is defined unequivocally since for any representative (p2, g2) ∈ [(p1, g1)], we obtain

rAdφPG (p̃,p2)
(g2)(p̃) = rAdφPG (p̃,p1)⋅φPG

(p1,p2)
(g2)(p̃) = rAdφPG (p̃,p1)

(AdφPG (p1,p2)
(g2))(p̃)

= rAdφPG (p̃,p1)
(g1)(p̃) .

Its smoothness is ensured by Prop.Niezb-10 – indeed, [r]⋅ is the (only) smooth map induced by
the (manifestly smooth) map

r̃⋅ ∶ (PG ×G) ×B PG Ð→ PG ∶ ((p, g), p̃) z→ rAdφPG (p̃,p)(g)(p̃) ,

constant on level sets of the canonical projection π(PG×G)/G. We readily convince ourselves that
[r]⋅ has properties analogous to the defining ones of a (left) group action: The neutral element
acts trivially,

[r][(p,e)](p̃) = rAdφPG (p̃,p)(e)(p̃) = re(p̃) = p̃ ,

and [r]⋅ is multiplicative in the first argument, i.e., for any pair [(p1, g1)], [(p2, g2)] ∈ (PG)πPG
(p̃),

the identity

[r][M]([(p1,g1)],[(p2,g2)])(p̃) = rAdφPG (p̃,p1)
(g1⋅AdφPG (p1,p2)

(g2))(p̃)

= rAdφPG (p̃,p1)
(g1)⋅AdφPG (p̃,p1)⋅φPG

(p1,p2)
(g2)(p̃) = rAdφPG (p̃,p1)

(g1)⋅AdφPG (p̃,p2)
(g2)(p̃)

= rAd
AdφPG

(p̃,p2)
(g−1

2
)
(AdφPG (p̃,p1)

(g1)) ○ rAdφPG (p̃,p2)
(g2))(p̃)

≡ AdφPG
(p̃,p2)⋅g

−1
2 ⋅φPG

(p2,p1)(g1) ○ [r][(p2,g2)](p̃)

holds true, which we may rewrite, using the equality

φPG
([r][(p2,g2)](p̃), p1) = φPG

(rg2⋅φPG
(p2,p̃)(p2), p1)

≡ φPG
(rg2⋅φPG

(p2,p̃)(p2), r
g2⋅φPG

(p2,p̃)⋅(g2⋅φPG
(p2,p̃))

−1

⋅φPG
(p2,p1)

(p2))

= (g2 ⋅ φPG
(p2, p̃))

−1 ⋅ φPG
(p2, p1) ,

in the desired form

[r][M]([(p1,g1)],[(p2,g2)])(p̃) = rAdφPG ([r]
[(p2,g2)]

(p̃),p1)
(g1)([r][(p2,g2)](p̃))

≡ [r][(p1,g1)] ○ [r][(p2,g2)](p̃) .
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It ought to be underlined that that the action of the adjoint bundle defined above commutes with
the defining (right) action r⋅ – indeed, for any [(p, g)] ∈ AdPG, h ∈ G and p̃ ∈ (PG)πPG

(p), we
conclude that

[r][(p,g)] ○ rh(p̃) = rAdφPG (rh(p̃),p)(g)(rh(p̃)) = rg⋅φPG
(p,rh(p̃))(p)

= rφPG
(p̃,p)⋅φPG

(p,rh(p̃))(rAdφPG (p̃,p)(g)(p̃))

≡ rφPG
(p̃,rh(p̃))([r][(p,g)](p̃)) = rh ○ [r][(p,g)](p̃) .

We may, next, lift this action, without losing any of its desired properties verified above, from the
total space of the adjoint bundle to the space of its (global) sections, according to the prescription

Γ[r]⋅ ∶ Γ(AdPG) × PG Ð→ PG ∶ (σ, p) z→ [r]σ○πPG
(p)(p) .

The space Γ(AdPG) (equipped with the natural structure of a Fréchet manifold) thus assumes
the rôle of the support of the structure of a (Fréchet–Lie) group with group operations

Γ[M] ∶ Γ(AdPG) × Γ(AdPG) Ð→ Γ(AdPG) ∶ (σ1σ2) z→ [M] ○ (σ1, σ2) ,

Γ[Inv] ∶ Γ(AdPG) ↺ ∶ σ z→ [Inv] ○ σ ,

Γ[ε] ∶ {●} Ð→ Γ(AdPG) ∶ ● z→ [(σ(⋅), e)] ,

induced, in an obvious (pointwise) manner, from the respective operations on AdPG, and, at
the same time, that of a subgroup of the group of automorphisms of the principal bundle PG

(covering the identity on the base). Here, the map Γ[r]σ is identified with the automorphism
(Γ[r]σ, idG, idB) in the notation of Def. 6.1. We may subsequently extend, in an obvious way, the
thus understood action of the group of sections of the adjoint bundle on PG to the bundle PG×M
over the same base B by setting

Γ[r̃]⋅ ∶= Γ[r]⋅ × idM ∶ Γ(AdPG) × (PG ×M) Ð→ PG ×M

∶ (σ, (p,m)) z→ ([r]σ○πPG
(p)(p),m) .

The property of the latter action of key significance for our later considerations is its commutativity
with the action λ̃⋅ defined in Eq. (6.2) that serves as the basis of the construction of the associated
bundle PG ×λM . Indeed, for any σ ≡ [(π, γ)] ∈ Γ(AdPG), g ∈ G and (p,m) ∈ PG ×M , we find –
upon invoking relative commutativity of the actions: [r]⋅ i r⋅, checked formerly – the identity

Γ[r̃]σ ○ λ̃g(p,m) = ([r]σ○πPG
(rg(p))(rg(p)), λg−1(m))

≡ ([r]σ○πPG
(p) ○ rg(p), λg−1(m)) = (rg ○ [r]σ○πPG

(p)(p), `g−1(m))

= λ̃g ○ Γ[r̃]σ(p,m) .

As a result of the above, the induced action Γ[r̃]⋅ descends to the quotient manifold (PG×M)/G ≡
PG×λM , i.e., it canonically induces a left action of the group Γ(PAd⋅G) on the manifold PG×λM ,
given by

[Γ[r̃]]λ⋅ ∶ Γ(AdPG) × PG ×λM Ð→ PG ×λM

∶ (σ, [(p,m)]) z→ [([r]σ○πPG
(p)(p),m)] .

Our hitherto analysis shows that the latter map is well-defined and has all the requisite properties
of a (left) group action. In the last step, we induce with its help the action, postulated in the
statement of the proposition, of the group Γ(AdPG) on the space of (global) sections of the
assciated bundle,

Γ[Γ[r̃]]λ⋅ ∶ Γ(AdPG) × Γ(PG ×λM) Ð→ Γ(PG ×λM)
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∶ (σ, [(π,µ)]) z→ [([r]σ○πPG
○π(⋅) ○ π(⋅), µ(⋅))] ≡ [([r]σ(⋅) ○ π(⋅), µ(⋅))] .(2)

This is, self-evidently, a lift, to the space of sections, of the map

[λ]⋅ ∶ AdPG ×B (PG ×λM) Ð→ PG ×λM

∶ ([(p1, g1)], [(p2,m2)]) z→ [(p2, λAdφPG (p2,p1)
(g1)(m2))]

whose well-definedness and multiplicativit in the first argument is a direct consequence of the
respective properties of the action Γ[Γ[r̃]]⋅, checked previously . That the action [λ]⋅ is locally
modelled on λ⋅, as claimed, is most straightforwardly proven with the help of the isomorphisms
[p∗]Ad oraz [p∗]λ, indicated before. Thus, we carry out the following calculation:

λ[p∗]Ad([(p1,g1)])([p∗]λ([(p2,m2)])) = λAdφPG (p∗,p1)
(g1) ○ λφPG

(p∗,p2)(m2)

= λφPG
(p∗,p2)⋅AdφPG (p2,p1)

(g1)(m2) = λφPG
(p∗,p2)(λAdφPG (p2,p1)

(g1)(m2))

≡ [p∗]λ([(p2, λAdφPG (p2,p1)
(g1)(m2))]) ≡ [p∗]λ ○ [λ][(p1,g1)]([(p2,m2)]) .

�

The above proposition together with its constructive proof demonstrate convincingly that the
goal set before has been attained. In so doing, they emphasise the rôle played by the space of
smooth sections of the associated bundle, which prompts us to take a closer look at the latter. We
do that in

Proposition 3. Adopt the notation of Def. 1 and Przykł. 1 (2). There exists a bijection

Γ(PG ×λM) ≅ HomG(PG,M) ,

where HomG(PG,M) is the set of G-equivariant maps of Def. 5.1.

Proof: Let σ = [(π,µ)] ∈ Γ(PG ×λ M) be a global section determined by (local) sections π ∈
Γloc(PG) and µ ∈ Γloc(B ×M). Using the quotient map and the canonical projection on the base
of the bundle PG, we may define the map

Φλ[σ] ∶ PG Ð→M ∶ pz→ λφPG
(p,π○πPG

(p))(µ ○ πPG
(p)) .

We readily convince ourselves that the above definition makes sense as for any pair (π′, µ′) = (π ⊲
Inv ○ γ, γ ⊳ µ) associated, in an obvious manner, with γ ∈ Γloc(B ×G), we find – upon invoking
the axioms of an action of a group on a set – the desired equality

λφPG
(p,π′○πPG

(p))(µ′ ○ πPG
(p)) = λφPG

(p,π○πPG
(p)⊲γ○πPG

(p)−1)(λγ○πPG
(p)(µ ○ πPG

(p)))

= λφPG
(p,π○πPG

(p))⋅γ○πPG
(p)−1⋅γ○πPG

(p)(µ ○ πPG
(p))

= λφPG
(p,π○πPG

(p))(µ ○ πPG
(p)) .

Its G-equivariance follows directly from the calculation:

Φλ[σ] ○ rg(p) = λφPG
(p⊲g,π○πPG

(p⊲g))(µ ○ πPG
(p ⊲ g))

= λg−1⋅φPG
(p,π○πPG

(p))(µ ○ πPG
(p)) = λg−1 ○Φλ⋅[σ](p) ,

carried out for arbitrary (p, g) ∈ PG×G, and using Prop. 6.1 in conjunction with the aforementioned
axioms.

In order to construct the inverse of the above assignment, we fix an (arbitrary) open trivialising
cover {Oi}i∈I for the bundle PG, and subsequently assign, to an arbitrary G-equivariant map
f ∶ PG Ð→M , the family

Sλ[f]i ∶ Oi Ð→ PG ×λM ∶ xz→ [(τ−1
i (x, e), f ○ τ−1

i (x, e))] , i ∈ I
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of local sections. Each of them is (locally) smooth as a superposition of the respective smooth
maps (τ−1

i (⋅, e), f ○ τ−1
i (⋅, e)) ∶ Oi Ð→ PG ×M and the surjective submersion π(PG×λM)/G. We

readily establish that these local sections are, in fact, restrictions (to the respective sets Oi) of a
global one upon noting that due to G-equivariance of the maps τi i f at any point x ∈ Oij , the
following equality holds:

Sλ[f]j(x) = [(τ−1
j (x, e), f ○ τ−1

j (x, e))] = [(τ−1
i (x, gij(x)), f ○ τ−1

i (x, gij(x)))]

= [(τ−1
i (x, e) ⊲ gij(x), f(τ−1

i (x, e) ⊲ gij(x))]

= [(τ−1
i (x, e) ⊲ gij(x), gij(x)−1 ⊳ f ○ τ−1

i (x, e)]

= [(τ−1
i (x, e), f ○ τ−1

i (x, e))] ≡ Sλ[f]i(x) .

A direct calculation of both superpositions:

Φλ[Sλ[f]] ∶ PG Ð→M ∶ pz→ λφPG
(p,p)(f(p)) = λe(f(p)) = f(p)

and

Sλ[Φλ[[(π,µ)]]] ∶ B Ð→ PG ×λM

∶ xz→ [(τ−1
i (x, e), λφPG

(τ−1i (x,e),π○πPG
○τ−1i (x,e))(µ ○ πPG

○ τ−1
i (x, e)))]

≡ [(τ−1
i (x, e), λφPG

(τ−1i (x,e),π(x))(µ(x)))] = [(π,µ)](x)

reveals the veracity of the desired identities

Φλ ○ Sλ = idHomG(PG,M) , Sλ ○Φλ = idΓ(PG×λM) .

�

A specialisation of the last result to the adjoint bundle turns out to carry further structural
information, displayed in

Proposition 4. The bijection

Γ(AdPG) ≅ HomG(PG,G)

of Prop. 3 is an isomorphism between the group of sections of the adjoint bundle, with the structure
detailed in the proof of Prop. 2, and the group of maps from PG to G equivariant relative to the
respective (left) actions rInv(⋅) and Ad⋅, with the natural pointwise group structure.

Proof: Borrowing the notation from the proofs of both propositions mentioned in the above
statement, we check – for any pair of sections σα = [(πα, γα)] ∈ Γ(AdPG), α ∈ {1,2} and a point
p ∈ PG –

ΦAd[Γ[M](σ1, σ2)](p) = AdφPG
(p,π1○πPG

(p))(γ1 ○ πPG
(p) ⋅AdφPG

(π1○πPG
(p),π2○πPG

(p))(γ2 ○ πPG
(p)))

= AdφPG
(p,π1○πPG

(p))(γ1 ○ πPG
(p)) ⋅AdφPG

(p,π1○πPG
(p))⋅φPG

(π1○πPG
(p),π2○πPG

(p))(γ2 ○ πPG
(p))

= AdφPG
(p,π1○πPG

(p))(γ1 ○ πPG
(p)) ⋅AdφPG

(p,π2○πPG
(p))(γ2 ○ πPG

(p))

= M ○ (ΦAd(σ1),ΦAd(σ2))(p) .

�

The structural character of the bijection referred to in Props. 2 and 3 is best illustrated in
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Proposition 5. Adopt the notation of Props. 2 and 3 and their proofs. The bijection Φλ is (left)
equivariant relative to the following actions of the group Γ(AdPG): the action Γ[Γ[r̃]]λ⋅ on the
space Γ(PG ×λM), defined in Eq. (2), and the natural action

[ΦAdλ]⋅ ∶ Γ(AdPG) ×HomG(PG,M) Ð→ HomG(PG,M)

∶ (γ,µ) z→ λΦAd[γ](⋅)(µ(⋅))
on the space of G-equivariant maps HomG(PG,M), which means that the action

ΦAdλ⋅ ≡ [ΦAdλ]⋅ ○ (Φ−1
Ad × idHomG(PG,M))

of the group HomG(PG,G) renders the diagram

Γ(AdPG) × Γ(PG ×λM)
Γ[Γ[r̃]]λ

⋅ //

ΦAd×Φλ

��

Γ(PG ×λM)

Φλ

��
HomG(PG,G) ×HomG(PG,M)

ΦAdλ⋅

// HomG(PG,M)

commutative.

Proof: Before all else, we convince ourselves that the map ΦAdλ⋅ is well-defined. To this end, we
pick up an arbitrary pair (γ,µ) ∈ HomG(PG,G) × HomG(PG,M) and consider the result of the
evaluation ΦAdλγ(µ) – we must prove that the latter is G-equivariant, which we do in a direct
computation, carried out for arbitrary (p, g) ∈ PG ×G,

ΦAdλγ ○ r∗g(µ)(p) = λγ○rg(p)(µ ○ rg(p)) = λAdg−1(γ(p))
○ λg−1(µ(p))

= λg−1(λγ(p)(µ(p))) ≡ λg−1 ○ΦAdλγ(µ)(p) .
It is obvious that the map ΦAdλ⋅ satisfies the axioms defining a group action. Therefore, it remains
to verify its equivariance. For arbitrary σ̃ = [(π̃, γ̃)] ∈ Γ(AdPG) and σ = [(π,µ)] ∈ Γ(PG ×λM)
as well as p ∈ PG, we calculate

Φλ[Γ[Γ[r̃]]λσ̃(σ)](p) = λφPG
(p,λσ̃○πPG (p)(π○πPG

(p)))(µ ○ πPG
(p))

= λφPG
(p,rAdφPG

(π○πPG
(p),π̃○πPG

(p))(γ̃○πPG
(p))(π○πPG

(p)))(µ ○ πPG
(p))

= λφPG
(p,rγ̃○πPG (p)⋅φPG

(π̃○πPG
(p),π○πPG

(p))(π̃○πPG
(p)))(µ ○ πPG

(p))

= λφPG
(p,π̃○πPG

(p))⋅γ̃○πPG
(p)⋅φPG

(π̃○πPG
(p),π○πPG

(p))(µ ○ πPG
(p))

= λφPG
(p,π̃○πPG

(p))⋅γ̃○πPG
(p)⋅φPG

(π̃○πPG
(p),p) ○ `φPG

(p,π○πPG
(p))(µ ○ πPG

(p))

= λAdφPG (p,π̃○πPG
(p))(γ̃○πPG

(p))(Φλ[σ](p))

= ΦAdλAdφPG (⋅,π̃○πPG
(⋅))(γ̃○πPG

(⋅))(Φλ[σ])(p)

≡ ΦAdλΦAd[σ̃](Φλ[σ])(p) ,
which is the anticipated result. �

Our hitherto considerations present Γ(AdPG) as a bundle of groups acting on a bundle of
manifolds M in a natural manner modelled on λ. The statement that we give below deepens our
observations substantially and, simultaneously, opens a path towards a natural physical interpre-
tation of the group Γ(AdPG) as the gauge group of field theory.
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Proposition 6. Adopt the notation of Prop. 2 and its proof. There exists a canonical group
isomorphism

Γ(AdPG) ≅ { (Φ, idG, f) ∈ AutGrpBunG(B)(PG) ∣ f = idB }

=∶ AutGrpBunG(B)(PG ∣B) .

Proof: We begin by establishing a bijection between the sets HomG(PG,G) and AutGrpBunG(B)(PG ∣B).
For that, we pick up (arbitrarily) γ ∈ HomG(PG,G) and define the map

Ψ[γ] ∶ PG ↺ ∶ pz→ rγ(p)(p) .
The latter is manifestly G-equivariant,

∀(p,g)∈PG×G ∶ Ψ[γ] ○ rg(p) ≡ rγ○rg(p)(rg(p)) = rg ○ rAdg−1(γ(p))
(p) = rγ(p)⋅g(p)

= rg ○Ψ[γ](p) ,
and preserves fibres, and so it defines an automorphism

(Ψ[γ], idG, idB) ∈ AutGrpBunG(B)(PG ∣B) .
Furthermore, it is a group homomorphism, a fact readily inferred from a direct computation

Ψ[M̃(γ1, γ2)](p) = rγ1(p)⋅γ2(p)(p) ≡ rγ2(p)⋅Adγ2(p)−1
(γ1(p))(p)

= rAdγ2(p)−1
(γ1(p)) ○ rγ2(p)(p) = rγ1(p⊲γ2(p)) ○ rγ2(p)(p)

≡ Ψ[γ1] ○Ψ[γ2](p) ,
carried out for arbitrary γ1, γ2 ∈ HomG(PG,G). At this stage, it suffices to invoke Prop. 3, to
obtain the sought-after group homomorphism

α⋅ ≡ (Ψ[⋅], idG, idB) ○ΦAd⋅ ∶ Γ(AdPG) Ð→ AutGrpBunG(B)(PG ∣B) .
Going in the opposite direction, we associate to an arbitrary automorphism (Φ, idG, idB) ∈

AutGrpBunG(B)(PG ∣B) the map

χ[(Φ, idG, idB)] ∶ PG Ð→ G ∶ pz→ φPG
(p,Φ(p))

whose G-equivariance is proven through reference to Prop. 5.1, and for arbitrary (p, g) ∈ PG ×G,

χ[(Φ, idG, idB)] ○ rg(p) ≡ φPG
(rg(p),Φ ○ rg(p)) = φPG

(rg(p), rg ○Φ(p))

= Adg−1(φPG
(p,Φ(p))) ≡ Adg−1 ○ χ[(Φ, idG, idB)](p) .

It is easy to see that the map

χ ∶ AutGrpBunG(B)(PG ∣B) Ð→ HomG(PG,G)
thus obtained is a group homomorphism – indeed, for any pair of automorphisms (Φα, idG, idB) ∈
AutGrpBunG(B)(PG ∣B), α ∈ {1,2}, we calculate

χ[(Φ1, idG, idB) ○ (Φ2, idG, idB)](p) = φPG
(p,Φ1 ○Φ2(p))

= φPG
(p,Φ1(p)) ⋅ φPG

(Φ1(p),Φ1 ○Φ2(p)) ,
but also

φPG
(Φ1(p),Φ1 ○Φ2(p)) = φPG

(Φ1(p),Φ1(p ⊲ ΦP (p,Φ2(p))))

= φPG
(Φ1(p),Φ1(p) ⊲ ΦP (p,Φ2(p))) = ΦP (p,Φ2(p)) ,

and hence

χ[(Φ1, idG, idB) ○ (Φ2, idG, idB)](p) = φPG
(p,Φ1(p)) ⋅ φPG

(p,Φ2(p))
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≡ M̃(χ[(Φ1, idG, idB)], χ[(Φ2, idG, idB)])(p) ,
in conformity with our expectations. In the end, we arrive at the group homomorphism

SAd⋅ ○ χ ∶ AutGrpBunG(B)(PG ∣B) Ð→ Γ(AdPG) .
In order to verify that the latter is the inverse of the previously considered homomorphism Ψ○ΦAd,
it is enough to check that χ is the inverse of the automorphism (Ψ[⋅], idG, idB), which we do
directly by computing – for arbitrary (p, g, x) ∈ PG ×G ×B –

(Ψ[⋅], idG, idB) ○ χ[(Φ, idG, idB)](p, g, x) = (rφPG
(p,Φ(p))(p), g, x) = (Φ(p), g, x)

≡ (Φ, idG, idB)(p, g, x)
and

χ ○ (Ψ[⋅], idG, idB)[γ](p) = φPG
(p, rγ(p)(p)) = γ(p) .

�

Extra constructions

In this closing section, we present two specialised results that form the basis of applications of
the theory of associated bundles in the modelling of physical phenomena, and in particular – of
the so-called Higgs effect.

Proposition 7. Adopt the notation of Thm. 5.3 and Prop. 1 and let G be a Lie group, H ⊆ G –
its arbitrary closed subgroup, and (PG,B,G, πPG

) – a principal bundle. The canonical projection
πG/H ∶ GÐ→ G/H induces an associated-bundle invariant

Φ[πG/H] ∶ PG ×` GÐ→ PG ×[`] G/H
which, in conjunction with the canonical isomorphism ι̃ from Example 1 (3), define a fibre-bundle
morphism

φπG/H
∶= Φ[πG/H] ○ ι̃−1 ∶ PG Ð→ PG ×[`] G/H

that induces the structure of a principal bundle on

(PG,PG ×[`] G/H,H, φπG/H
)

and a bundle isomorphism

[̃ι]−1 ∶ PG/H ≅ÐÐ→ PG ×[`] G/H .

Proof: The canonical projection πG/H is a G-equivariant map,

∀g,g̃∈G ∶ πG/H ○ `g̃(g) = πG/H(g̃ ⋅ g) = (g̃ ⋅ g)H ≡ [`]g̃(gH) ≡ [`]g̃ ○ πG/H(g) ,
and so, in the light of Prop. 1, it induces an associated-bundle invariant as in the statement of the
proposition under consideration, which – in its turn – provides us with a bundle morphism

φπG/H
∶ PG Ð→ PG ×[`] G/H ∶ pz→ Φ[πG/H]([(p, e)]) ,

that we may rewrite as

φπG/H
(p) ≡ [p][`] ○ πG/H ○ [p]−1

[`]([(p, e)])

= [p][`] ○ πG/H(φPG
(p, p) ⋅ e) = [p][`] ○ πG/H(e) = [p][`](H) = [(p,H)] ,

and subsequently examine in detail. The morphism is a superposition of surjective submersions,

φπG/H
= [⋅][`] ○ πG/H ○ [⋅]−1

[`] ○ ι̃
−1 ,

and as such is itself a surjective submersion. Its level sets are orbits orbitami of the action of the
subgroup H. Indeed, for any p1, p2 ∈ PG, we find the equivalences

φπG/H
(p2) = φπG/H

(p1) ⇐⇒ [(p2,H)] = [(p1,H)]
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⇐⇒ ∃g∈G ∶ (p2,H) = (p1 ⊲ g−1, gH) ⇐⇒ ∃g∈H ∶ p2 = p1 ⊲ g−1

⇐⇒ p2 ∈ p1 ⊲ H .

We also have, for arbitrary (p1, p2) ∈ PG ×PG×[`]G/H PG, the relation p2 = p1 ⊲ φPG
(p1, p2), and so

also the map

φ̃PG
∶ PG ×PG×[`]G/H PG Ð→ H ∶ (p1, p2) z→ φPG

(p1, p2) ,

determined uniquely by the condition of belonging to a common level set of φπG/H
, is manifestly

smooth. Accordingly, we may invoke Prop. 6.2 to conclude that

H // PG

φπG/H

��
PG ×[`] G/H

is, in fact, a principal bundle with the structure group H. On the basis of Prop.Niezb-10, we note,
next, that in view of surjective submersivity of the projection πPG/H and smoothness of φπG/H

,
there exists a unique map

[̃ι]−1 ∶ PG/HÐ→ PG ×[`] G/H

that closes the commutative diagram

PG ×[`] G/H

PG πPG/H

//

φπG/H

;;

PG/H

[̃ι]−1

OO

.

Swapping the rôles of the maps πPG/H and φπG/H
(i.e., in particular, using surjective submersivity

of the latter), we arrive at the commutative diagram

PG/H

PG
φπG/H

//

πPG/H

;;

PG ×[`] G/H

[̃ι]

OO

whose existence ensures a diffeomorphic character of [̃ι]. This diffeomorphism preserves level sets
of the respective urjective submersions (πPG/H and φπG/H

) since for any point p ∈ PG, we obtain
equalities

πPG×[`]G/H ○ [̃ι]−1(p ⊲ H) ≡ πPG×[`]G/H ○ [̃ι]−1 ○ πPG/H(p) = πPG×[`]G/H ○ φπPG/H
(p)

= πPG×[`]G/H ○Φ[πPG/H] ○ ι̃−1(p) = πPG×[`]G/H([(p,H)])

≡ πPG
(p) .

Consequently, we may employ it to induce on PG/H the structure of a fibre bundle with respect
to which [̃ι] is (tautologically) a fibre-bundle isomorphism. �
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Proposition 8. Adopt the notation of Def. 1 and Thm. 5.3 and let Hα, α ∈ {1,2} be closed
subgroups of the Lie group G that are mutually conjugate, i.e., such that there exists an element
g21 ∈ G with the property

H2 = Adg21(H1) ,

and let (PG,B,G, πPG
) be a principal bundle. The G-equivariant diffeomorphism

[℘21] ∶ G/H1
≅ÐÐ→ G/H2 ∶ gH1 z→ (g ⋅ g−1

21 )H2

induces an associated-bundle isomorphism

Φ[℘21] ∶ PG ×[`] G/H1
≅ÐÐ→ PG ×[`] G/H2

which extends to an isomorphism of principal bundles

(rg−121
,Φ[℘21],Adg21) ∶ (PG,PG ×[`] G/H1,H1, φπPG/H1

)

≅ÐÐ→ (PG,PG ×[`] G/H2,H2, φπPG/H2
) ,

and, in so doing, closes the commutative diagram

G
ι̃○[⋅]` //

πG/H2

��

PG

φπG/H2

��

H2
oo

G

℘
g−1
21

<<

πG/H1

��

PG

[⋅]
−1
` ○ι̃−1oo

r
g−1
21

77

φπG/H1

��

H1

Ad
g−1
21

@@

oo

G/H2

[⋅][`] // PG ×[`] G/H2

πPG×
[`]G/H2

��

G/H1

[℘21]

==

PG ×[`] G/H1

πPG×
[`]G/H1

��

[⋅]
−1
[`]

oo

Φ[℘21]

88

B

B

.

Proof: The diffeomorphism [℘21] is well-defined since for any h ∈ H1, we have

(g ⋅ h ⋅ g−1
21 )H2 = (g ⋅ g21 ⋅Adg21(h))H2 = (g ⋅ g−1

21 )H2 ,

and manifestly G-invariant. Therefore, it determines an invertible associated-bundle invariant, or
an isomorphism between the associated bundles

Φ[℘21] ∶ PG ×[`] G/H1
≅ÐÐ→ PG ×[`] G/H2 ∶ [(p, gH1)] z→ [(p, (g ⋅ g−1

21 )H2)] ,

which – clearly – is covered by the map rg−121
. Indeed, for any p ∈ PG, we obtain the equality

φπG/H2
○ rg−121

(p) ≡ φπG/H2
(p ⊲ g−1

21 ) = [(p ⊲ g−1
21 ,H2)] = [(p, g−1

21 H2)]

≡ Φ[℘21]([(p,H1)]) = Φ[℘21] ○ φπG/H1
(p) .

Equivariance of rg−121
relative to the actions of the subgroups H1 ∋ h1 and H2,

rg−121
(p ⊲ h1) = p ⊲ (h1 ⋅ g−1

21 ) ≡ p ⊲ (g−1
21 ⋅Adg21(h1)) ≡ rg−121

(p) ⊲ Adg21(h1) ,
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enables us to identify (rg−121
,Φ[℘21],Adg21) as an isomorphism of principal bundles. Finally, we

check commutativity of the subdiagrams containing both vertices labelled by G. Thus, over any
point p ∈ PG,

ι̃ ○ [p]` ○ ℘g−121
○ [p]−1

` ○ ι̃−1(p) = ι̃ ○ [p]` ○ ℘g−121
○ [p]−1

` ([(p, e)]) = ι̃ ○ [p]` ○ ℘g−121
(e)

= ι̃ ○ [p]`(g−1
21 ) = ι̃([(p, g−1

21 )]) = p ⊲ g−1
21 ≡ rg−121

(p) ,
and, moreover, for any element g ∈ G,

πG/H2
○ ℘g−121

(g) = πG/H2
(g ⋅ g−1

21 ) = (g ⋅ g−1
21 )H2 ≡ [℘g−121

](gH1) ≡ [℘g−121
] ○ πG/H1

(g) .
�


