
CLASSICAL FIELD THEORY IN THE TIME OF COVID-19
12. LECTURE BATCH

The Anderson–Brout–Englert–Higgs–Guralnik–Hagen–Kibble effect
as an example of the structure-group reduction

Our hitherto exploration of the rich theory of principal and associated bundles has provided us
with quasi-algorithmic procedures of construction of lagrangean models of field dynamics with a
built-in local symmetry on the basis of global symmetry-invariant dynamics. The procedure leads
to a natural emergence of a new species of fundamental fields, to wit, the massless vector (bosonic)
gauge field that mediates interactions between currents of matter-field excitations charged with
respect to the symmetry (in the sense of Noether) and exhibits its own dynamics typically described
by Yang–Mills invariants. The scheme has been confirmed, through innumerable experiments, to
neatly and consistently explain the (microscopic) nature of the fundamental interactions, at least
up to the currently attainable energy scales – this is, in short, the story of tremendous success of
the so-called Standard Model of electroweak and strong interactions1.

The symmetry of physical phenomena referred to above is a property of the space of field
configurations (manifesting itself though invariance of the Dirac–Feynman amplitudes defined on
these and covariance of the ensuing field equations). It is not – at least not a priori – inher-
ited by particular field configurations. In other words, it may happen – as it, indeed, does in
nature – that the isotropy group of a classical field configuration (a critical point of the Dirac–
Feynman amplitude, oftentimes termed a (classical) vacuum of the theory) is a proper (closed)
subgroup of the symmetry group of the Dirac–Feynman amplitude. Whenever this is the case,
we speak of a spontaneous breakdown of symmetry. It leads to a host of rather peculiar
field-theoretic phenomena that we now proceed to describe in the language of fibre bundles with
a compatible connection in the experimentally confirmed scenario known under the name of the
Anderson–Brout–Englert–Higgs–Guralnik–Hagen–Kibble effect, usually referred to as
the Higgs effect, in which we are given a field of type F , with the action

λ⋅ ∶ G × F Ð→ F

of the symmetry group G, whose dynamics is determined by the standard Klein–Gordon-type
‘kinetic’ term associated with a G-invariant metric on F , as in lecture 11 (p. 5), and a G-invariant
potential term

U ∶ F Ð→ R , U ○ λg = U , g ∈ G

whose distinguished minimum f0 ∈ F defines a vacuum of (the F -sector of) the theory with an
isotropy group

{ g ∈ G ∣ λg(f0) = f0 } ≡ H ⊊ G .

The latter subgroup is closed by construction, and hence it is a Lie subgroup of G by Cartan’s
Thm. 4.1. The symmetry orbit of the vacuum,

G ⊳ f0 = { λg(f0) ∣ g ∈ G } ≡ F0 ⊂ F ,

1Classically, we might freely add the lagrangean description of the gravitational field to the above. However,
while the Standard Model admits a largely consistent quantisation, there exists no consistent model of quantum
dynamics of the gravitational field to date.
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to be called the vacuum manifold henceforth, is then equivariantly diffeomorphic with the
homogeneous space2

G/H ≅ G ⊳ f0

on which the symmetry group acts in an induced manner as

[`]⋅ ∶ G ×G/HÐ→ G/H ∶ (k, gH)z→ `k(g)H ≡ (k ⋅ g)H .

It is, consequently, the bundles

F0
// PG ×λ⋅ F0

πPG×λ⋅F0
≡π0

��
Σ

and

G/H // PG ×[`]⋅ G/H

πPG×[`]⋅G/H≡[π]

��
Σ

associated with (principal) gauge bundles PG through the induced actions on the single orbits
F0 and G/H, respectively, that shall play a central rôle in the remainder of our discussion. The
fundamental geometric mechanism to be encountered in it is heralded by the following

Definition 1. Adopt the hitherto notation, and in particular that of Def. 6.1, and let G1 and
G2 be Lie groups of which the former is monomorphically embedded in the latter by

12 ∶ G1 ↪ G2 .

Given principal bundles PA ∶= (PGA ,B,GA, πGA), A ∈ {1,2} over a common base B, we call an
arbitrary monomorphism between them

(I12, idB , 12) ∶ P1 Ð→ P2 ,

composed of an embedding

I12 ∶ PG1 ↪ PG2

of the total spaces covering the identity diffeomorphism idB ∶ B Ð→ B on the base and of the
formerly introduced Lie-group monomorphism 12, a reduction of the structure group of P1.
Whenever it exists, the image subbundle

(I12, idB , 12)(P1) ⊂ P2

is termed the reduced bundle, and we say that the structure group G2 is reducible to G1.

Thus, we shall demonstrate how a non-punctual nature of the vacuum manifold (i.e., the relation
H ⊊ G) and existence of a section of either of the two principal bundles written out above leads
to a reduction of the structure group of the gauge bundle of the field theory, and systematically
reconstruct the field content of a field theory with the reduced gauge group. In so doing, we shall
find the following reformulation of the concept of reducibility useful

Proposition 1. Let GA, A ∈ {1,2} be Lie groups and let 12 ∶ G1 ↪ G2 be a Lie-group
monomorphism. A principal bundle with the structure group G2 admits a reduction along 12 iff
there exists a trivialising cover of its base with the corresponding transition maps taking values
in 12(G1).

2This is an elementary result of the theory of spaces with a group action which we leave to the Reader as an
easy exercise.
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Proof: Adopt the notation of Def. 1. Assume, first, that the principal bundle P2 admits a reduc-
tion and consider a cover {Oi}i∈I of B trivialising for P1 (and so also for the reduced bundle
(I12, idB , 12)(P1)), with the associated local trivialisations

τ1
i ∶ π−1

P1
(Oi)

≅ÐÐ→ Oi ×G1

and the corresponding transition maps

g1
ij ∶ Oij Ð→ G1 .

The latter can be used to define manifestly smooth and G2-equivariant mappings

τ2
i ∶ π−1

P2
(Oi)Ð→ Oi ×G2 ∶ p2 z→ (πP2(p2), φP2

(I12 ○ τ1−1
i (πP2(p2), e), p2)) .

These are, in fact, local trivialisations of P2. Indeed, they are injective,

τ2
i (p′2) = τ2

i (p2) ⇐⇒
⎧⎪⎪⎪⎨⎪⎪⎪⎩

πP2
(p′2) = πP2(p2)

φP2
(I12 ○ τ1−1

i (πP2(p′2), e), p′2) = φP2
(I12 ○ τ1−1

i (πP2(p2), e), p2)

⇐⇒
⎧⎪⎪⎪⎨⎪⎪⎪⎩

πP2(p′2) = πP2(p2)

φP2
(I12 ○ τ1−1

i (πP2(p2), e), p′2) = φP2
(I12 ○ τ1−1

i (πP2(p2), e), p2)

⇐⇒
⎧⎪⎪⎪⎨⎪⎪⎪⎩

πP2(p′2) = πP2(p2)

φP2
(p′2, p2) = e

⇐⇒ p′2 = p2 ,

and hence also surjective (recall the local model of P2). Their explicit inverses read

τ2−1
i ∶ Oi ×G2 Ð→ π−1

P2
(Oi) ∶ (x, g)z→ rg ○ I12 ○ τ1−1

i (x, e) .
The corresponding transition maps,

g2
ij ∶ Oij Ð→ G2 ,

can be extracted from a direct calculation (carried out for arbitrary (x, g) ∈ Oij ×G):

τ2
i ○ τ2−1

j (x, g) = τ2
i ○ rP2

g ○ I12 ○ τ1−1
j (x, e) = (idB × ℘g) ○ τ2

i ○ I12 ○ τ1−1
j (x, e)

= (πP2 ○ I12 ○ τ1−1
j (x, e), φP2

(I12 ○ τ1−1
i (πP2 ○ I12 ○ τ1−1

j (x, e), e), I12 ○ τ1−1
j (x, e)) ⋅ g)

= (πP1 ○ τ1−1
j (x, e), φP2

(I12 ○ τ1−1
i (πP1 ○ τ1−1

j (x, e), e), I12 ○ τ1−1
j (x, e)) ⋅ g)

= (x,φP2
(I12 ○ τ1−1

i (x, e), I12 ○ τ1−1
j (x, e)) ⋅ g)

= (x,φP2
(I12 ○ τ1−1

i (x, e), I12 ○ τ1−1
i (x, g1

ij(x))) ⋅ g)

= (x,φP2
(I12 ○ τ1−1

i (x, e), I12 ○ rP1

g1
ij(x)

○ τ1−1
i (x, e)) ⋅ g)

= (x,φP2
(I12 ○ τ1−1

i (x, e), rP2

12○g1
ij(x)

○ I12 ○ τ1−1
i (x, e)) ⋅ g) = (x, 12 ○ g1

ij(x) ⋅ g) ,

that is

g2
ij ≡ 12 ○ g1

ij ∶ Oij Ð→ 12(G1) ⊂ G2 ,

as claimed.
Conversely, suppose that there is a covering {Oi}i∈I of B trivialising for P2 such that the

corresponding local trivialisations

τ2
i ∶ π−1

P2
(Oi)

≅ÐÐ→ Oi ×G2
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yield transition maps

g2
ij ∶ Oij Ð→ 12(G1) ⊂ G2 .

The latter give rise to the unique smooth mappings

g1
ij ∶ Oij Ð→ G1

with the property

g2
ij = 12 ○ g1

ij

which we may use to reconstruct a principal bundle P1 over B with the g1
ij as the transition

maps, along the lines of (the proof of) the Clutching Theorem of Lecture 1 (pp. 29–31). Thus, we
have

P1 ≡ (⊔
i∈I

(Oi ×G1))/g1⋅⋅

with the projection to the base

πP1
∶ (⊔

i∈I

(Oi ×G1))/g1⋅⋅ Ð→ B ∶ [(x, g, i)]z→ x

and local trivialisations

[τ1
i ] ∶ π−1

P1
(Oi)

≅ÐÐ→ Oi ×G1 ∶ [(x, g, i)]z→ (x, g) .
The manifestly injective diffeomorphisms

Φi ∶= τ2−1
i ○ (idOi × 12) ○ [τ1

i ] ∶ π−1
P1

(Oi)Ð→ π−1
P2

(Oi) , i ∈ I(1)

glue over the intersections Oij ∋ x,
Φj([(x, g, i)]) ≡ Φj([(x, g1

ji(x) ⋅ g, j)]) ≡ τ2−1
j (x, 12(g1

ji(x) ⋅ g)) = τ2−1
j (x, g2

ji(x) ⋅ 12(g))

= τ2−1
i (x, g2

ij(x) ⋅ g2
ji(x) ⋅ 12(g)) = τ2−1

i (x, 12(g)) ≡ Φi([(x, g, i)]) ,
and so give rise to a globally smooth embedding

I12 ∶ P1 ↪ P2 , I12↾π−1
P1

(Oi)
≡ Φi

with the desired properties. �

With the above maths in hand, we are finally ready to discuss the physics.

The configurational aspect. We begin by introducing the main protagonist of our story in

Definition 2. Adopt the hitherto notation. A Higgs field of type F0 with the gauge sym-
metry of type PG is an arbitrary global section

H ∈ Γ(PG ×λ⋅ F0)
of the Higgs vacuum bundle (PG ×λ⋅ F0,Σ, π0) over the spacetime Σ.

We shall, now, spend some time developing basic intuitions as to geometric implications of existence
of a Higgs field. To this end, we fix a G-equivariant diffeomorphism

µ∗ ∶ F0
≅ÐÐ→ G/H∗ ,

which amounts to3 distinguishing a point f∗ ≡ µ−1
∗ (H∗) with the isotropy group Gf∗ ≡ H∗, and

pass to the local description of the Higgs field H. Thus, consider a local section

σ ∶ O Ð→ PG

3Every G-equivariant map µ∗ ∶ F0
≅

ÐÐ→ G/H∗ distinguishes the point f∗ ∶= µ−1
∗

(H∗) whose isotropy group
Gf∗ ∋ g is determined by the set of equivalences: λg(f∗) = f∗ ⇐⇒ g∗ H∗ ≡ [`]g(H∗) = [`]g ○µ∗(f∗) = µ∗(λg(f∗)) =

µ∗(f∗) = H∗ ⇐⇒ g ∈ H∗, i.e., Gf∗ ≡ H∗. Conversely, with an arbitrary point f∗ ∈ F0 with the corresponding
isotropy group Gf∗ = H∗, we associate the map µ∗ ∶ F0 Ð→ G/H∗ ∶ λg(f∗) z→ gH∗ which is manifestly
well-defined and G-equivariant.
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of the gauge bundle PG over some open set O ⊂ Σ, and use the corresponding local trivialisation

τσ ∶ π−1
PG

(O) ≅ÐÐ→ O ×G

(cp Prop. 6.5) to induce a local trivialisation

τ̃σ ∶ π−1
PG×λ⋅F0

(O) ≅ÐÐ→ O × F0

(as in Def. 7.1) and to define a smooth mapping

χ ∶= pr2 ○ τ̃σ ○H ∶ O Ð→ F0 .

In other words, we have the local form

H ∶ O Ð→ PG ×λ⋅ F0 ∶ xz→ [(τ−1
σ (x, e), χ(x))] ,

or, equivalently,

χ ≡Hσ ,

that is χ is a local presentation of the Higgs field in the gauge σ in the sense of Def. 8.5. Using
these, we define a subset

PHH∗↾O ∶= { τ−1
σ (x, g) ∣ g ∈ π−1

G/H∗(µ∗ ○ χ(x)) } ≡ { τ−1
σ (x, g) ∣ µ∗ ○ χ(x) = gH∗ } ⊂ PG↾O .

As shall be argued below, PHH∗↾O is a restriction, to O, of a reduction PHH∗ ↪ PG induced by the
Higgs field H. Indeed, let σA ∶ OA Ð→ PG, A ∈ {1,2} be two local sections of the gauge bundle
over open sets OA ⊂ B with a non-empty intersection O12 ≡ O1 ∩ O2 ∋ x. In virtue of global
smoothness of H, we readily establish, for the respective local presentations χA ∶ OA Ð→ F0,

[(τ−1
σ1

(x, e), χ1(x))] ≡H(x) ≡ [(τ−1
σ2

(x, e), χ2(x))] = [(τ−1
σ1

(x, e), λg12(x) ○ χ2(x))] ,
or

χ1↾O12
= λg12(⋅) ○ χ2↾O12

where

g12 ∶ O12 Ð→ G

is the transition mapping of PG relating the two local trivialisations τσA . Now, in consequence of
the assumed transitivity of the action of G on F0, we find two smooth maps

γA ∶ OA Ð→ G , A ∈ {1,2}
satisfying, at every point y ∈ OA,

χA(y) = λγA(y)(f0) ,
so that

λγ1(x)(f0) ≡ χ1(x) = λg12(x) ○ χ2(x) = λg12(x)⋅γ2(x)(f0) ,
or

g12 ⋅ γ2↾O12
= γ1 ⋅ h12↾O12

(2)

for some smooth map

h12 ∶ O12 Ð→ H∗ .

Since, moreover,

µ∗ ○ χA(y) ≡ µ∗(λγA(y)(f0)) = [`]γA(y)(µ∗(f0)) ≡ γA(y)H∗ ,

we have, for any h ∈ H∗,

τ−1
σA

(y, γA(y) ⋅ h) ∈ PHH∗↾OA ,
and so we may define local sections of the would-be reduction as

σA ∶ OA Ð→ PHH∗ ∶ y z→ τ−1
σA

(⋅, γA(⋅)) ≡ rγA(⋅)(σA(⋅)) ,
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with the corresponding local trivialisations

τA ∶ (πPG
↾PH

H∗
)−1(OA)Ð→ OA ×H∗ ∶ τ−1

σA
(y, g)z→ (y, γA(y)−1 ⋅ g) .(3)

From this, we readily derive the transition mappings,

τ−1
2 (x,h) ≡ τ−1

σ2
(x, γ2(x) ⋅ h) = τ−1

σ1
(x, g12(x) ⋅ γ2(x) ⋅ h) = τ−1

σ1
(x, γ1(x) ⋅ (h12(x) ⋅ h))

≡ τ−1
1 (x,h12(x) ⋅ h) ,

and so PHH∗ does, indeed, have H∗ ∋ h12(x) as the structure group.
Remaining on the current level of intuitiveness, we may enquire as to the nature of the depen-

dence of the (would-be) reduction upon the arbitrary choices made along the way, to wit, that of
the G-equivariant modelling µ∗ of the symmetry orbit F0 of the vacuum and that of the local
gauge σ of the gauge bundle PG under reduction. For the former, note that given two points
f
(A)
∗ ∈ F0, A ∈ {1,2}, there exists an element g21 ∈ G such that

f
(2)
∗ = λg21

(f (1)
∗ ) ,

and then

H
(2)
∗ ≡ G

f
(2)
∗

= Adg21
(G

f
(1)
∗

) ≡ Adg21
(H

(1)
∗ ) .

The two restrictions

PH
H

(A)
∗
↾O = { τ−1

σ (x, g) ∣ µ
(A)
∗ ○ χ(x) = gH

(A)
∗ } , A ∈ {1,2} ,

defined in terms of the respective G-equivariant diffeomorphisms

µ
(A)
∗ ∶ F0

≅ÐÐ→ G/H(A)
∗ ∶ λg(f (A)

∗ )z→ gH
(A)
∗ ,

are related by the diffeomorphism4 with restrictions

Φ21↾O ∶ PH
H

(1)
∗
↾O

≅ÐÐ→ PH
H

(2)
∗
↾O ∶ τ−1

σ (x, g)z→ rg−1
21
(τ−1
σ (x, g)) ,

or

Φ21 ≡ rg−1
21
↾PH

H
(1)
∗
,

covering the identity diffeomorphism on the base. This we augment with the isomorphisms

Adg21 ∶ H
(1)
∗

≅ÐÐ→ H
(2)
∗

between the respective structure groups, to obtain an isomorphism

(rg−1
21
↾PH

H
(1)
∗
, idΣ,Adg21

) ∶ (PH
H

(1)
∗
,Σ,H

(1)
∗ , πPG

↾PH
H
(1)
∗

) ≅ÐÐ→ (PH
H

(2)
∗
,Σ,H

(2)
∗ , πPG

↾PH
H
(2)
∗

)

between the reductions. Indeed, upon denoting the defining actions of the respective structure
groups (induced through restriction) as

r(A)
⋅ ∶ PH

H
(A)
∗

×H
(A)
∗ Ð→ PH

H
(A)
∗

∶ (τ−1
σ (x, g), hA)z→ rhA(τ−1

σ (x, g)) ,

we readily verify the commutativity of the diagram

PH
H

(1)
∗
×H

(1)
∗

r(1)⋅ //

r
g−1
21
↾
PH

H
(1)
∗

×Adg21

��

PH
H

(1)
∗

r
g−1
21
↾
PH

H
(1)
∗

��
PH

H
(2)
∗
×H

(2)
∗

r(2)⋅

// PH
H

(2)
∗

.

4Here, smoothness is understood with respect to the natural submanifold structure implicit in our intuitive
discussion that shall become transparent later on.
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Passing to the question of dependence of the reduction upon the choice of the gauge, we consider
two local gauges

σ(A) ∶ O Ð→ PG , A ∈ {1,2}
over the same neighbourhood O ⊂ Σ, related by a gauge transformation

Γ(12) ∶ O Ð→ G

as

σ(2)(⋅) = rΓ(12)(⋅)(σ(1)(⋅)) ,
whence also, for arbitrary (x, g) ∈ O ×G,

τσ(1) ○ τ−1
σ(2)(x, g) = (x,Γ(12)(x) ⋅ g) .

Write

χ(A) ∶=Hσ(A) ,

so that

[(τ−1
σ(1)(x, e), χ(1)(x))] = H(x) = [(τ−1

σ(2)(x, e), χ(2)(x))] = [(rΓ(12)(x)(τ
−1
σ(1)(x, e)), χ(2)(x))]

= [(τ−1
σ(1)(x, e), λΓ(12)(x)(χ(2)(x)))] ,

and

P
H(A)

H∗ ↾O = { τ−1
σ(A)(x, g) ∣ µ∗ ○ χ(A)(x) = gH∗ } .

Given that

χ(A)(⋅) = λγ(A)(⋅)(f∗)
for some smooth profiles

γ(A) ∶ O Ð→ G ,

we conclude that

Γ(12) ⋅ γ(2) = γ(1) ⋅ h(12)

for some smooth profile

h(12) ∶ O Ð→ H∗ ,

and, therefore, (the inverses of) the ensuing local trivialisations of the associated reductions,

τ (A) ∶ (πPG
↾
P
H(A)
H∗

)−1(O)Ð→ O ×H∗ ∶ τ−1
σ(A)(y, g)z→ (y, γ(A)(y)−1 ⋅ g)

become related as

τ−1
(2)(x,h) ≡ τ−1

σ(2)(x, γ(2)(x) ⋅ h) = τ
−1
σ(1)(x,Γ(12)(x) ⋅ γ(2)(x) ⋅ h)

= τ−1
σ(1)(x, γ(1)(x) ⋅ h(12)(x) ⋅ h) ≡ τ−1

(1)(x,h(12)(x) ⋅ h) .

We infer that the above gauge transformation induces an automorphism5 of the reduction, with
local data h(12).

Thus, all in all, the isomorphism class of PHH∗ is manifestly independent of the arbitrary choices
involved in its constructions. This constatation permits us, in particular, to abstract from the
geometric peculiarities of the vacuum manifold F0 and consider its fixed model

F0 ≡ G/H
with

λ⋅ ≡ [`]⋅
5We urge the Reader to verify that the local data do, indeed, satisfy the relevant identity (6.3) upon invoking

Eq. (2).
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in what follows.
We formalise the intuition developed above in

Theorem 1 (On the Reduction of a Principal Bundle through the Higgs Mechanism). Adopt
the hitherto notation and let H be a closed subgroup of the Lie group G. An arbitrary principal
bundle (PG,Σ,G, πPG

) with the structure group G admits a reduction of the latter along the
canonical injection

H ∶ H↪ G

iff there exists a Higgs field of type G/H with the gauge symmetry of type PG.

Proof: Assume, first, that a principal bundle (PG,Σ,G, πPG
) admits the reduction, so that – in

virtue of Prop. 1 – there exists an open cover {Oi}i∈I of Σ together with local sections

σi ∶ Oi Ð→ PG, i ∈ I
such that the corresponding local trivialisations

τi ≡ τσi ∶ π−1
PG

(Oi)
≅ÐÐ→ Oi ×G

yield smooth transition maps

hij ∶ Oij Ð→ H ⊂ G .

Upon invoking Prop. 7.7 (and its proof), define maps

Hi ∶= φπG/H ○ σi ∶ Oi Ð→ PG ×[`] G/H ∶ xz→ [(σi(x),H)] , i ∈ I
with the property

πPG×[`]G/H ○Hi(x) ≡ πPG×[`]G/H([(σi(x),H)]) = πPG
○ σi(x) ≡ x ,

rewriting as

πPG×[`]G/H ○Hi = idOi

which identifies the Hi as local sections of the associated bundle PG ×[`] G/H. At an arbitrary
point x ∈ Oij , these satisfy

Hj(x) ≡ [(σj(x),H)] = [(rhij(x) ○ σi(x),H)] = [(σi(x), hij(x)H)] ≡ [(σi(x),H)] ≡Hi(x) ,
and so we obtain a global section

H ∶ ΣÐ→ PG ×[`] G/H
with restrictions

H↾Oi ≡Hi .

Conversely, let

H ∶ ΣÐ→ PG ×[`] G/H
be a global section,

πPG×[`]G/H ○H = idΣ .

Cover the image H(Σ) ⊂ PG ×[`] G/H of the base Σ under the latter section with open sets
Ui ⊂H(Σ), i ∈ I,

⋃
i∈I

Ui ≡H(Σ) ,

over which the principal bundle (PG,PG ×[`] G/H,H, φπG/H) of Prop. 7.7 trivialises, i.e., it admits
local sections

si ∶ Ui Ð→ PG

related over intersections Uij ∋ [(p, gH)] as

sj([(p, gH)]) = r
hij([(p,gH)]) ○ si([(p, gH)])
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by smooth transition maps

hij ∶ Uij Ð→ H .

Upon covering Σ with the open sets (continuous preimages of open sets)

Oi ∶=H−1(Ui) , i ∈ I ,
we define smooth maps

σi ∶= si ○H ∶ Oi Ð→ PG , i ∈ I
with the property, written out for an arbitrary x ∈ Oi,

H(x) ≡ (φπG/H ○ si)(H(x)) = φπG/H ○ σi(x) ≡ [(σi(x),H)]
that implies

x ≡ (πPG×[`]G/H ○H)(x) = πPH
○ σi(x) ,

or, equivalently,

πPH
○ σi = idOi .

Thus, the σi are local sections of the principal bundle PG which satisfy, at an arbitrary point
x ∈ Oij ,

σj(x) ≡ sj(H(x)) = rhij(H(x))(si(H(x))) ≡ rhij○H(x)(σi(x)) ,
from which we read off the transition maps for the corresponding local trivialisations τi ≡ τσi :

gij ∶= hij ○H ∶ Oij Ð→ H ⊂ G .

In the light of Prop. 1, this concludes the proof. �

While the statement of the above theorem does not come as a surprise after the discussion pre-
ceding it, the precise relation between the reduction that it describes and the formerly constructed
reduced bundle remains unclear, not least because the constructive proof of Thm. 1 refers to the
alternative notion of reducibility stated in Prop. 1. We pause now to bridge this gap. To this end,
we first establish a more direct relation between local sections

σi ∶ Oi Ð→ PG ∶ xz→ τ−1
i (x, γi(x)) ≡ τ−1

i (x, e) , i ∈ I

of the (would-be) reduced bundle6 PHH (over some cover O ≡ {Oi}i∈I of Σ trivialising for PG)
and the Higgs section H ∈ Γ(PG ×[`] G/H), with, for x ∈ Oi,

H(x) = [(τ−1
i (x, e), γi(x)H)] ≡ [(σi(x),H)] ≡ φπG/H ○ σi(x) .

Thus, we conclude that H is precisely the global section of the associated bundle PG ×[`] G/H
determined by the distinguished local sections of PG related by transition maps with values in
H ⊂ G from the reconstruction of the Higgs field in the first part of the proof. Upon noting, once
more, a trace of the structure of the principal bundle

H // PG

φπG/H

��
PG ×[`] G/H

(4)

of Prop. 7.7, we may, next, definitively confirm the status of PHH by exploring the anatomy of the
above principal bundle.

6Using the freedom of choice at our disposal, we fix once and for all f∗ ≡ f0 with H∗ ≡ H, and consider the
model case F0 ≡ G/H.



10 CLASSICAL FIELD THEORY IN THE TIME OF COVID-19 12. LECTURE BATCH

This we recover by judiciously combining local trivialisations of PG,

τi ∶ π−1
PG

(Oi)
≅ÐÐ→ Oi ×G , i ∈ I(5)

(related by transition maps gij ∶ Oij Ð→ G), over the open cover O of the common base of PG

and PG ×[`] G/H, and those of the principal bundle G
πG/HÐÐÐÐ→ G/H of Cor. 6.1,

gα ∶ Uα Ð→ G , α ∈ A

(related by transition maps γαβ ∶ Uαβ Ð→ H), associated with an open cover {Uα}α∈A of G/H,
the former inducing local trivialisations

τ̃ i ∶ π−1
PG×[`]G/H(Oi)

≅ÐÐ→ Oi ×G/H ∶ [(p, gH)]z→ (πPG
(p), (pr2 ○ τi(p) ⋅ g)H) , i ∈ I

of the associated bundle

G/H // PG ×[`] G/H

πPG×[`]G/H

��
Σ

.

As the open sets

Wiα ∶= Oi × Uα , α ∈ A

compose an open cover of Oi ×G/H,

⋃
α∈A

Wiα ≡ Oi ×G/H ,

their diffeomorphic preimages

W̃iα ∶= τ̃−1
i (Wiα) , (i, α) ∈ I ×A

cover the total space PG ×[`] G/H of the associated bundle,

⋃
(i,α)∈I×A

W̃iα ≡ PG ×[`] G/H .

Define smooth maps

σ̃iα ∶ W̃iα Ð→ PG ∶ [(τ−1
i (x, e), gH)]z→ rgα○[τ−1

i (x,e)]−1
[`]([(τ

−1
i (x,e),gH)])(τ−1

i (x, e))

(here, the [τ−1
i (x, e)][`] are the fibre-modelling isomorphisms of Def. 7.1), with

rgα○[τ−1
i (x,e)]−1

[`]([(τ
−1
i (x,e),gH)])(τ−1

i (x, e)) ≡ rgα([`]φPG
(τ−1
i

(x,e),τ−1
i

(x,e))(gH))(τ−1
i (x, e))

= rgα(gH)(τ−1
i (x, e)) = τ−1

i (x, gα(gH)) .
We obtain

φπG/H ○ σ̃iα([(τ−1
i (x, e), gH)]) = φπG/H(τ−1

i (x, gα(gH))) ≡ [(τ−1
i (x, gα(gH)),H)]

= [(τ−1
i (x, e), gα(gH)H)] ,

but – by definition –

gH ≡ πG/H ○ gα(gH) = gα(gH)H ,

whence

φπG/H ○ σ̃iα([(τ−1
i (x, e), gH)]) = [(τ−1

i (x, e), gH)] .
We infer that the σ̃iα are local sections of (4),

φπG/H ○ σ̃iα = id
W̃iα

.

The corresponding local trivialisations can be obtained by inverting the maps

τ̃−1
iα ∶ W̃iα ×H

≅ÐÐ→ φ−1
πG/H(W̃iα)
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∶ ([(τ−1
i (x, e), gH)], h)z→ rh ○ σ̃iα([(τ−1

i (x, e), gH)]) ≡ τ−1
i (x, gα(gH) ⋅ h) ,

and so they take the explicit form

τ̃ iα ∶ φ−1
πG/H(W̃iα)Ð→ W̃iα ×H ∶ pz→ ([(p,H)], (gα ○ πG/H ○ pr2 ○ τi(p))

−1 ⋅ (pr2 ○ τi(p))) .

Indeed, for p = τ−1
i (x, g), we obtain the identity

τ̃−1
iα ○ τ̃ iα(p) ≡ τ̃−1

iα([(p,H)], (gα ○ πG/H ○ pr2 ○ τi(p))
−1 ⋅ (pr2 ○ τi(p)))

≡ τ̃−1
iα([(τ−1

i (x, e), gH)], gα(gH)−1 ⋅ g) = τ−1
i (x, gα(gH) ⋅ gα(gH)−1 ⋅ g) = τ−1

i (x, g) ≡ p
and

τ̃ iα ○ τ̃−1
iα([(τ−1

i (x, e), gH)], h) ≡ τ̃ iα(τ−1
i (x, gα(gH) ⋅ h))

≡ ([(τ−1
i (x, gα(gH) ⋅ h),H)], (gα ○ πG/H ○ pr2 ○ τi ○ τ−1

i (x, gα(gH) ⋅ h))−1

⋅(pr2 ○ τi ○ τ−1
i (x, gα(gH) ⋅ h)))

= ([(τ−1
i (x, e), (gα(gH) ⋅ h)H)], (gα((gα(gH) ⋅ h)H)−1 ⋅ gα(gH) ⋅ h))

= ([(τ−1
i (x, e), gα(gH)H)], (gα(gα(gH)H)−1 ⋅ gα(gH) ⋅ h))

= ([(τ−1
i (x, e), gH)], (gα(gH)−1 ⋅ gα(gH) ⋅ h)) = ([(τ−1

i (x, e), gH)], h) .
Having identified the local trivialisations, we readily derive the corresponding transition maps
(computed at ([(τ−1

j (x, e), gH)], h) ∈ W̃iαjβ),

τ̃ iα ○ τ̃−1
jβ([(τ−1

j (x, e), gH)], h) ≡ τ̃ iα(τ−1
j (x, gβ(gH) ⋅ h))

≡ ([(τ−1
j (x, gβ(gH) ⋅ h),H)], (gα ○ πG/H ○ pr2 ○ τi ○ τ−1

j (x, gβ(gH) ⋅ h))−1

⋅(pr2 ○ τi ○ τ−1
j (x, gβ(gH) ⋅ h)))

= ([(τ−1
j (x, e), gH)], gα((gij(x) ⋅ g)H)−1 ⋅ gij(x) ⋅ gα(gH) ⋅ γαβ(gH) ⋅ h) .

Clearly, if we could assume the γα G-equivariant, we would have the γαβ ○pr2 ○ τ̃ j as the ensuing
transition maps. In any event,

gα((gij(x) ⋅ g)H)−1 ⋅ gij(x) ⋅ gα(gH) ⋅ γαβ(gH) ∈ H .(6)

This can be seen as follows. The gα satisfy the identities

πG/H ○ gα = idUα ,

and so there exist smooth maps

hα ∶ Uα Ð→ H

such that, for an arbitrary point gH ∈ Uα,
gα(gH) = g ⋅ hα(gH) .(7)

Therefore,

gα((gij(x) ⋅ g)H)−1 ⋅ gij(x) ⋅ gα(gH) ⋅ γαβ(gH) = hα((gij(x) ⋅ g)H) ⋅ hα(gH) ⋅ γαβ(gH) ∈ H ,

as claimed.
Returning to the discussion of the reduced bundle, we choose as the open cover of Σ trivialising

for PG the one comprised of the sets

Oiα ∶=H−1(W̃iα) ⊂ Oi , (i, α) ∈ I ×A
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and take the smooth maps

σiα ∶= σ̃iα ○H ∶ Oiα Ð→ PG ∶ xz→ τ−1
i (x, gα(γi(x)H))

in the rôle of local sections. Over double intersections Oiαjβ ∋ x, these are related as

σjβ(x) ≡ τ−1
j (x, gβ(γj(x)H))

= r
gα(γi(x)H)−1

⋅gij(x)⋅gβ(γj(x)H)(τ
−1
i (x, gα(γi(x)H)))

= rgα((gij(x)⋅γj(x)⋅hij(x)−1)H)−1⋅gij(x)⋅gβ(γj(x)H)(τ−1
i (x, gα(γi(x)H)))

= rgα((gij(x)⋅γj(x))H)−1⋅gij(x)⋅gβ(γj(x)H)(τ−1
i (x, gα(γi(x)H)))

by the transition maps

hiαjβ(⋅) ∶= hα((gij(⋅) ⋅ γj(⋅))H)−1 ⋅ hα(γj(⋅)H) ⋅ γαβ(γj(⋅)H) ∶ Oiαjβ Ð→ H ⊂ G ,

cp Eqs. (6) and (7). We may, now, invoke (the proof of) the Clutching Theorem of Lecture 1
(pp. 29–31) to reconstruct a principal bundle with the structure group H and the above-extracted
transition maps,

PH ≡ ( ⊔
(i,α)∈I×A

(Oiα ×H))/∼h⋅⋅ .

Its faithful local image within PG along the mapping Φiα of Eq. (1) is given by (cp Eq. (7))

Φiα(PH↾Oiα) ≡ { τ−1
σiα(x,h) ≡ rh ○ σiα(x) ∣ (x,h) ∈ Oiα ×H }

≡ { τ−1
i (x, gα(γi(x)H) ⋅ h) ∣ (x,h) ∈ Oiα ×H }

= { τ−1
i (x, γi(x) ⋅ hα(γi(x)H) ⋅ h) ∣ (x,h) ∈ Oiα ×H }

= { τ−1
i (x, γi(x) ⋅ h) ∣ (x,h) ∈ Oiα ×H } ≡ PHH ↾Oiα .

Thus, the subspace

PHH ≡ ⋃
(i,α)∈I×A

PHH ↾Oiα ⊂ PG

identified previously is, indeed, the reduced bundle, as claimed before. Accordingly, we may carry
out all local considerations with regard to the reductiom mechanism on the hands-on model PHH .
This approach enables us to straightforwardly prove the following important uniqueness result.

Proposition 2. Adopt the hitherto notation, and in particular that of Prop. 8.5 and of the proof
of Prop. 7.6. Let H ∈ Γ(PG ×[`] G/H) be a Higgs field. For any Γ ∈ Γ(AdPG), there exists
an isomorphism (ΦΓ, idΣ, idH) of principal bundles with the structure group H between the
reduced bundle P

ΓH
H ⊂ PG associated with the Γ-transform ΓH of H and the automorphic image

αΓ(PHH ) ⊂ αΓ(PG) ≡ PG of the reduced bundle PHH ⊂ PG,

(ΦΓ, idΣ, idH) ∶ P
ΓH
H

≅ÐÐ→ αΓ(PHH ) .

Proof: Consider the reduced bundles defined by a pair of Higgs fields: H ∈ Γ(PG ×[`] G/H) and
its gauge-transform ΓH. Upon choosing an open cover {Oi}i∈I of Σ trivialising for PG, with the
corresponding local trivialisations

τi ∶ π−1
PG

(Oi)
≅ÐÐ→ Oi ×G

with the associated transition maps

gij ∶ Oij Ð→ G ,

we may always write γ as

Γ↾Oi = [(τ−1
i (⋅, e),Γi(⋅))]
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for some smooth maps

Γi ∶ Oi Ð→ G

subject to the relation

Γj↾Oij = Adgij(Γi↾Oij)
implied by the global smoothness of γ. Assume, furthermore, that the Higgs field H has, as
before, the local presentation

H↾Oi = [(τ−1
i (⋅, e), γi(⋅)H)] ,

so that
ΓH↾Oi = [(τ−1

i (⋅, e), (Γi ⋅ γi)(⋅)H)] .
When identifying the local profiles

Γγi ∶ Oi Ð→ G

for ΓH, we must account for the irremovable ambiguity implicit in the identity
Γγi(⋅)H = (Γi ⋅ γi)(⋅)H ,

that is we allow an arbitrary correction
Γγi = Γi ⋅ γi ⋅ Inv ○ hi

quantified by a smooth map

hi ∶ Oi Ð→ H .

If, now, the transition maps of the reduced bundle defined by H are given by

hij ∶ Oij Ð→ H ,

or – in other words –

gij ⋅ γj↾Oij = γi↾Oij ⋅ hij ,

cp Eq. (2), then those of the reduced bundle defined by ΓH,
Γhij ∶ Oij Ð→ H ,

are fixed by the identity
Γγi↾Oij ⋅ Γhij ≡ gij ⋅ Γγj↾Oij ≡ gij ⋅ (Γj ⋅ γj ⋅ Inv ○ hj)↾Oij = Γi↾Oij ⋅ gij ⋅ (γj ⋅ Inv ○ hj)↾Oij

= (Γi ⋅ γi ⋅ Inv ○ hi)↾Oij ⋅ hi↾Oij ⋅ hij ⋅ Inv ○ hj↾Oij

≡ Γγi↾Oij ⋅ (hi↾Oij ⋅ hij ⋅ Inv ○ hj↾Oij)
in the form

Γhij = hi↾Oij ⋅ hij ⋅ Inv ○ hj↾Oij .(8)

Keeping that in mind, we write out inverses of the respective distinguished local trivialisations of
the reduced bundles introduced in Eq. (3), that is

τ−1
i ∶ Oi ×H

≅ÐÐ→ (πPG
↾PH

H
)−1(Oi) ∶ (x,h)z→ τ−1

i (x, γi(x) ⋅ h)(9)

for PHH and
Γτ−1
i ∶ Oi ×H

≅ÐÐ→ (πPG
↾
P

ΓH
H

)−1(Oi) ∶ (x,h)z→ τ−1
i (x,Γi(x) ⋅ γi(x) ⋅ hi(x)−1 ⋅ h)

for P
ΓH
H .

Following the prescription from the constructive proof of Prop. 8.5, we obtain

αΓ(τ−1
i (x,h)) = τ−1

i (x,Γi(x) ⋅ γi(x) ⋅ h) ≡ τ−1
i (x, (Γi(x) ⋅ γi(x) ⋅ hi(x)−1) ⋅ hi(x) ⋅ h)

≡ Γτ−1
i (x,hi(x) ⋅ h) ,(10)
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which identifies the hi ∶ Oi Ð→ H as candidates for the local data of ΦΓ. We refer to them as
local data of the effective gauge transformation in what follows. Their status is confirmed
by identity (8) on the basis of Thm. 6.1 (note that the transition maps of the reduced bundle
associated with the local profiles Γi ⋅ γi are identical with those of the one associated with the
γi). �

Remark 1. The last proposition demonstrates that realising the effective (gauge) symmetry
modelled on the vacuum isotropy group H in the original setting7 associated with the mother
gauge bundle PG requires a simultaneous gauge transformation of the gauge bundle (for which it
is simply an automorphism in virtue of Prop. 7.6) and of the reference Higgs section, as it is only
then that we obtain

αInv○Γ(P
ΓH
H ) ≅ PHH .

That the reduced gauge symmetry cannot be realised in terms of the original one is best seen, at this
stage, by trying to identify those gauge automorphisms Γ ∈ Γ(AdPG) of the mother gauge bundle
PG which preserve (up to an isomorphism in the category of principal bundles with the structure
group H) the reduced subbundle PHH associated with a fixed Higgs field H ∈ Γ(PG ×[`] G/H). To
this end, we consider, once more, as in Eq. (10), the effect of the gauge automorphism on a point
in PHH ,

αΓ(τ−1
i (x,h)) = τ−1

i (x,Γi(x) ⋅ γi(x) ⋅ h) = τ−1
i (x, γi(x) ⋅Adγi(x)−1(Γi(x)) ⋅ h)

≡ τ−1
i (x,Adγi(x)−1(Γi(x)) ⋅ h) ,

and conclude that a generic gauge transformation does not preserve (the isomorphism class of)
the reduced bundle as

Adγi(x)−1(Γi(x)) ∉ H ,

and even restricting to those with Γi ∶ Oi Ð→ H (which seems only natural) does not save the day,
unless the vacuum isotropy group H is a normal subgroup in G. What does work, on the other
hand, is the radical restriction of the codomain of local data of admisible gauge automorphisms
to the subgroup

Hcentr ≡ H ∩Z(G) ,
where Z(G) is the centre of G.

Having discussed the existence and uniqueness of a reduction of the structure group of a gauge
bundle in the presence of a Higgs field, we may, finally, proceed with a study of its physical
implications.

The fundamental configurational consequence of the reduction is stated in

Proposition 3. Adopt the hitherto notation and let M be a manifold with a smooth action

λ ∶ G ×M Ð→M

of the Lie group G. Whenever there exists a Higgs field H ∈ Γ(PG ×[`] G/H), to every global
section of the associated bundle PG ×λ M there corresponds a global section of the associated
bundle PHH ×λM , where

λ ∶ H ×M Ð→M ∶ (h,m)z→ λh(m)
is the one-sided restriction of λ to the vacuum-isotropy subgroup.

Proof: Consider a global section ϕ ∈ Γ(PG ×λM) and use the local trivialisations (5) to write it
as

ϕ↾Oi = [(τ−1
i (⋅, e), ϕi(⋅))]

7Of course, the reduced bundle, as any principal bundle, has its proper automorphism group Γ(AdPH
H ).
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in terms of some smooth maps

ϕi ∶ Oi Ð→M

with properties

ϕi↾Oij = λgij(⋅)(ϕj↾Oij) .
Upon invoking the definition (9) of the associated local sections of the reduced bundle, we trivially
rewrite the above as

ϕ↾Oi ≡ [(τ−1
i (⋅, e), λγi(⋅)−1(ϕi(⋅)))] ,

and the smooth maps

ϕi ∶= λγi(⋅)−1(ϕi(⋅)) ∶ Oi Ð→M

are readily found to satisfy, at an arbitrary point x ∈ Oij ,
ϕi(x) ≡ λγi(x)−1(ϕi(x)) = λ(gji(x)−1⋅γj(x)⋅hji(x))−1(ϕi(x)) = λhij(x) ○ λγj(x)−1(λgij(x)(ϕi(x)))

≡ λhij(x)(ϕj(x)) ,
as desired. �

In order to appreciate the ‘ontological-status’ transition effected by the above seemingly triv-
ial rewriting, we should recall that it is not the section ϕ itself but, instead, its local presentation
enters the lagrangean model of gauge-symmetric field dynamics, cp Def. 8.5. This requires fixing
the (local) gauge, and it is precisely at this stage that the difference between the two interpreta-
tions of ϕ becomes apparent: While in the absence of the Higgs field, we have solely the trivialising
sections σi(⋅) ≡ τ−1

i (⋅, e) of PG at our disposal, giving rise to

ϕσi(⋅) ≡ Φλ[ϕ] ○ σi(⋅) ≡ λφPG
(σi(⋅),τ

−1
i (πPG

○σi(⋅),e))(ϕi(⋅)) = ϕi(⋅) ,
the appearance of H provides us with the alternative choice

Hϕi(⋅) ∶= ϕσi(⋅) ≡ Φλ[ϕ] ○ σi(⋅) ≡ λφ
PH
H

(σi(⋅),τ
−1
i (πPG

○σi(⋅),e))(ϕi(⋅)) = ϕi(⋅) ,

with the gluing properties over double intersections controlled by the isotropy group H, as derived
in the proof of the last proposition. The physical significance of this transition is reflected in

Definition 3. Adopt the hitherto notation. The local presentation Hϕi = ϕσi of the (matter)
field ϕ ∈ Γ(PG ×λM) of type M associated with the local section σi ≡ τ−1

i (⋅, e) of the reduced
(gauge) bundle PG in the presence of a Higgs field H ∈ Γ(PG ×[`] G/H) is called the reduced
local (matter) field of type M .

In particular,

Corollary 1. Adopt the hitherto notation. The reduced Higgs field is globally constant,
HHi ≡ H , i ∈ I .

Proof: Obvious. �

We conclude the present discussion of the configurational aspect of the Higgs phenomenon by
establishing the nature of the effective gauge symmetry of a field theory formulated in terms of
the reduced fields, in conformity with our former findings. This we do in

Proposition 4. Adopt the hitherto notation. An arbitrary gauge transformation Γ ∈ Γ(AdPG)
of a (matter) field ϕ ∈ Γ(PG ×λM) of type M ,

(Γ, ϕ)z→ Γφ ,

is realised on the corresponding reduced local fields {Hϕi}i∈I by the local data {hi}i∈I of the
effective gauge transformation as per

ΓH(Γϕ)
i
(⋅) = λhi(⋅)(Hϕi) , i ∈ I .
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Proof: A simple exercise. �

Remark 2. The simlutaneous gauge transformation of both: the matter field and the Higgs
field in the statement of the proposition takes into account our former findings, stated in Rem. 1.
Were we to disregerd them, a derivation of the local presentation of a gauge transformation of
the reduced fields with the Higgs field kept fixed would lead to precisely the same conclusions
(constraints on the admissible gauge transformations G) as before – a verification of this claim is
left to the Reader.

The dynamical aspect. To be continued. . .


