

Duality, Descent & Defects I

LECTURE II

2024 / 25

A LATINO PAIR GROUPOID

GROUPOID'S ANATOMY:

ON LIE GROUPS, LOCAL & GLOBAL DIFFERENTIAL STRUCTURE IS ENCODED BY THE LEFT RSP. RIGHT REGULAR ACTION λ . RSP. ρ .

ON LIE GROUPOIDS, THINGS GET SUBTLE AS THEY ACT ON THEMSELVES ONLY FIBREWISE...

DEF. 31. FOR ANY LIE GROUPOID $(M, g, s, t, \lambda, \rho, \iota)$,

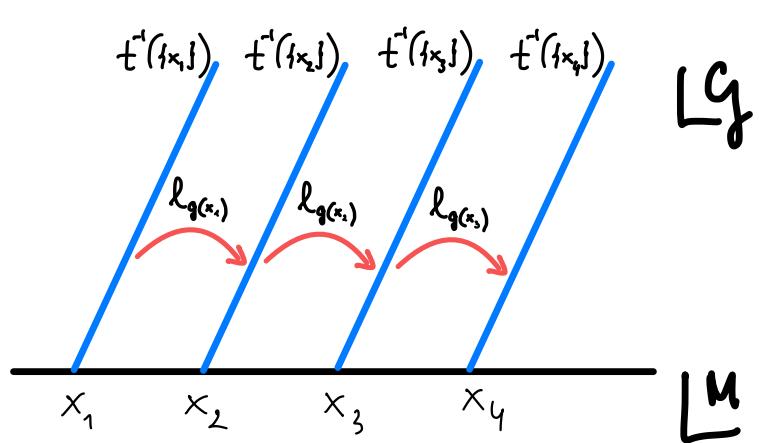
GIC FOR ANY $g \in s^{-1}(\{x\}) \cap t^{-1}(\{y\})$, THE **LEFT-TRANSLATION** BY g IS THE SMOOTH MAP

$$\lambda_g : t^{-1}(\{x\}) \rightarrow t^{-1}(\{y\}) : h \mapsto g \cdot h$$

THE **RIGHT-TRANSLATION** BY g IS THE SMOOTH MAP

$$\rho_g : s^{-1}(\{y\}) \rightarrow s^{-1}(\{x\}) : h \mapsto h \cdot g$$

IN PHYSICAL APPLICATIONS, EXISTENCE
GOOD ENOUGH, & SO WE LOOK
for GENERALISATIONS of, SAY, i...



REPLACE: $g \mapsto g(\cdot)$

$$\begin{matrix} \dots \\ t(g) \equiv M \\ \downarrow \\ g \end{matrix}$$

with $s(g(x)) = t(t^{-1}(tx)) \equiv x$

THE REQUIREMENT THAT SUCH AN ACTION BE A DIFFEOMORPHISM
IMPLIES THAT ITS RESTRICTION TO M HAS THIS PROPERTY,
i.e., $t \circ g \in \text{Diff}(M)$. THIS LEADS to...

Definition 31 ([MMr03]). Let $\mathbf{Gr} = (M, \mathcal{G}, s, t, \text{Id}, \text{Inv}, \cdot)$ be a Lie groupoid. A (global) **bisection** of \mathbf{Gr} is a section $\sigma: M \rightarrow \mathcal{G}$ of the surjective submersion $s: \mathcal{G} \rightarrow M$ such that the induced map

$$t_*\sigma \equiv t \circ \sigma: M \rightarrow M$$

is a diffeomorphism. Equivalently, it is a submanifold $S \subset \mathcal{G}$ with the property that both restrictions: $s|_S$ and $t|_S$ are diffeomorphisms. We shall denote the set of bisections as $\text{Bisec}(\mathbf{Gr})$.

A **local bisection** of \mathbf{Gr} is a local section $\sigma: O \rightarrow \mathcal{G}$ of s over an open subset $O \subset M$ such that the induced map

$$t_*\sigma \equiv t \circ \sigma: O \rightarrow t \circ \sigma(O)$$

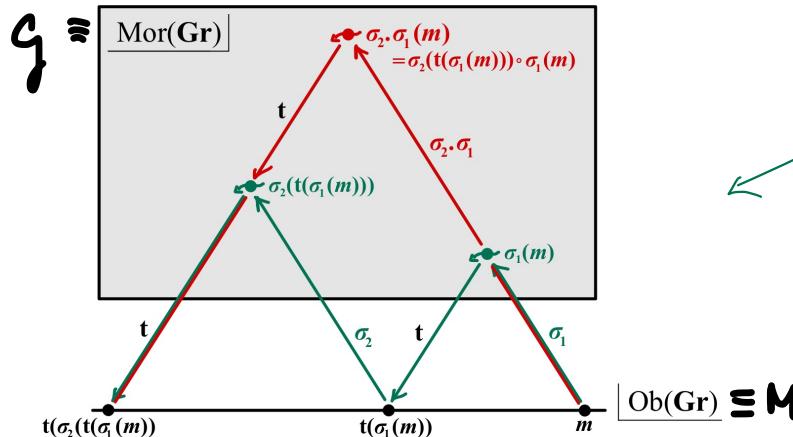
is a diffeomorphism. We shall denote the set of local bisections as $\text{Bisec}_{\text{loc}}(\mathbf{Gr})$.

Definition 32. The **group of bisections** of \mathbf{Gr} is the canonical structure of a group on $\text{Bisec}(\mathbf{Gr})$. Its binary operation is defined as

$$\cdot: \text{Bisec}(\mathbf{Gr}) \times \text{Bisec}(\mathbf{Gr}) \rightarrow \text{Bisec}(\mathbf{Gr}): (\sigma_2, \sigma_1) \mapsto \sigma_2(t \circ \sigma_1(\cdot)) \cdot \sigma_1(\cdot) \equiv \sigma_2 \cdot \sigma_1.$$

The neutral element is Id , termed the **unit bisection** in the present context, and the corresponding inverse is

$$\text{Inv}: \text{Bisec}(\mathbf{Gr}) \rightarrow \text{Bisec}(\mathbf{Gr}): \beta \mapsto \text{Inv} \circ \beta \circ (t_*\beta)^{-1} \equiv \beta^{-1}.$$



E.9.1

Ex. 34. For $Gr \equiv \hat{G}$, we find $\text{Bisec}(\hat{G}) \cong G$.

Ex. 35. For $Gr \equiv \text{Pair}(M)$, we find $\text{Bisec}(\text{Pair}(M)) \cong \text{Diff}(M)$.

Ex. 36. For $Gr \equiv \text{Pair}_\Sigma(M)$, we find

$$\text{Bisec}(\text{Pair}_\Sigma(M)) \cong \text{Aut}_{\text{Bun}(\Sigma)}(M \mid \text{id}_\Sigma) =: \text{Aut}_{\text{Bun}(\Sigma)}(M)_{\text{verl.}}$$

Ex. 37. For $Gr \equiv G \rtimes_\lambda M$, we find

$$\text{Bisec}(G \rtimes_\lambda M) \cong \{f: M \rightarrow G \mid (m \mapsto f(m)^{-1} f(m)) \in \text{Diff}(M)\}$$

Ex. 38. For $Gr \equiv \hat{M}$, we find $\text{Bisec}(\hat{M}) = \{\text{id}_M\} \cong 1$.

B-ACTIONS :

Definition 39. The **left regular action of \mathbb{B} (on itself)** is

$$\ell: \mathbb{B} \times \mathbb{B} \longrightarrow \mathbb{B}: (\gamma, \beta) \mapsto \gamma \cdot \beta \equiv \ell_\gamma(\beta),$$

and the **right regular action of \mathbb{B} (on itself)** is

$$\varphi: \mathbb{B} \times \mathbb{B} \longrightarrow \mathbb{B}: (\beta, \gamma) \mapsto \beta \cdot \gamma \equiv \varphi_\gamma(\beta).$$

ON ITSELF

The **adjoint action of \mathbb{B} on itself** is

$$c: \mathbb{B} \times \mathbb{B} \longrightarrow \mathbb{B}: (\gamma, \beta) \mapsto \gamma \cdot \beta \cdot \bar{\gamma}^{-1} \equiv c_\gamma(\beta).$$

Definition 40. The **shadow action of \mathbb{B} on M** is

$$t_*: \mathbb{B} \times M \longrightarrow M: (\sigma, m) \mapsto t(\sigma(m)).$$

By the usual abuse of the notation, we shall refer by the same name and use the same symbol for the group homomorphism

ON M

$$t_*: \mathbb{B} \longrightarrow \text{Diff}(M).$$

Definition 41. The **left-multiplication of \mathcal{G} by \mathbb{B}** is the left action

$$L: \mathbb{B} \times \mathcal{G} \longrightarrow \mathcal{G}: (\sigma, g) \mapsto \sigma(t(g)).g \equiv L_\sigma(g) \equiv \sigma \triangleright g.$$

The **right-multiplication of \mathcal{G} by \mathbb{B}** is the right action

$$R: \mathcal{G} \times \mathbb{B} \longrightarrow \mathcal{G}: (g, \sigma) \mapsto g \cdot (\sigma^{-1}(s(g)))^{-1} \equiv R_\sigma(g) \equiv g \triangleleft \sigma.$$

ON G

The **conjugation of \mathcal{G} by \mathbb{B}** is the left action

$$C: \mathbb{B} \times \mathcal{G} \longrightarrow \mathcal{G}: (\sigma, g) \mapsto \sigma(t(g)).g \cdot \sigma(s(g))^{-1} \equiv C_\sigma(g) \equiv \sigma \triangleright g \triangleleft \sigma^{-1}.$$

IT IS NOT HARD TO SEE THAT GENERICALLY THERE EXIST ARROWS WITH NO GLOBAL BISECTIONS THROUGH THEM (SEE: **Rem. 45.**). HENCE,

Definition 42. A Lie groupoid \mathcal{G} is called **Id-reducible** if for each $g \in \mathcal{G}$ there exists $\beta \in \mathbb{B}$ such that $g = \beta(s(g))$, i.e., if there is a global bisection through every arrow.

Remark 43. The name is justified by the following simple observation: The condition $g = \beta(s(g))$ is satisfied iff $g = R_\beta(\text{Id}_{t(g)})$. Note, e.g., that the action groupoid of Ex. 15 is manifestly Id-reducible.

HOWEVER,

Theorem 44. [ZCL09, Thm. 3.1] Every Lie groupoid with connected fibres of the source map is Id-reducible.

Remark 45. The significance of the assumption of s -connectedness of \mathcal{G} is emphasised by the following counter-example, which we borrow from Ref. [SWo16, Rem. 2.18 b)]. Take any two non-diffeomorphic manifolds M and N , and consider the pair groupoid $\text{Pair}(M \sqcup N) \equiv \mathbf{Gr}$ of their disjoint union, with $\text{Bisec}(\mathbf{Gr}) \cong \text{Diff}(M \sqcup N)$. Pick arbitrary points $m \in M$ and $n \in N$. Clearly, there is no global bisection through $(n, m) \in \text{Mor } \mathbf{Gr}$ (here, we view M and N as submanifolds in $M \sqcup N$) as there is no (global) diffeomorphism $M \rightarrow N$, which could map $m \mapsto n$.

THE SITUATION CHANGES DRAMATICALLY, AND CONSEQUENTLY, TOO, WHEN WE PASS FROM GLOBAL TO LOCAL BISECTIONS...

Prop. 46. FOR ANY Lie GROUPOID $Gr = (M, g, s, t, Id, Inv, \mu)$ & ANY ARROW $g \in G$, THERE EXISTS A LOCAL BISECTION $\beta \in \text{Bise}_{\text{loc}}(Gr)$ ON A NEIGHBOURHOOD OF $s(g)$ s.t. $g = \beta(s(g))$.

Proof: WE CONSIDER THE TANGENTS OF s & t AT g . BOTH MAPS ARE SUBMERSIVE, & SO WE CAN USE THE FOLLOWING

LEMMA 47. LET $V, W_1, W_2 \in \text{Vect}_{\mathbb{K}}^{<\infty}$ WITH $W_1 \xrightarrow{\sim} W_2$, & LET $\chi_A \in \text{Hom}_{\mathbb{K}}(V, W_A)$, $A \in \{1, 2\}$ BE EPI. THERE EXISTS A SUBSPACE $\Delta \subset V$ WITH PROPERTY $\chi_A|_{\Delta} : \Delta \xrightarrow{\cong} W_A$, $A \in \{1, 2\}$.

Proof of LEMMA: WITHOUT ANY LOSS OF GENERALITY, WE MAY ASSUME $W_1 = W_2 = W$ (IT SUFFICES TO CONSIDER $\tilde{\chi}_2 := \omega \circ \chi_2$ instead of χ_2). (21)

Denote $D = \dim_K W$. Pick any $\{v_i\}_{i \in \overline{1, D}}$ s.t.

$$W = \langle \chi_1(v_i) \mid i \in \overline{1, D} \rangle_K$$

If the $\chi_2(v_i)$ are linearly independent, then $I := \langle v_i \mid i \in \overline{1, D} \rangle_K$ is the sought-after subspace, i.e., $\Delta = I$.

If not, assume - without loss of generality - that

$$\chi_2(I) \equiv \langle \chi_2(v_j) \mid j \in \overline{1, K} \rangle_K \quad (\text{possibly } K=0).$$

We have $V = I \oplus \text{Ker } \chi_1$, so so there exist vectors

$$\xi_a \in \text{Ker } \chi_1, a \in \overline{K+1, D} \quad \text{s.t.} \quad \langle \chi_2(v_j), \chi_2(\xi_a) \mid j \in \overline{1, K} \wedge a \in \overline{K+1, D} \rangle_K = W$$

We may then take $\delta_l := \begin{cases} v_l & \text{for } l \in \overline{1, K} \\ v_l + \xi_l & \text{for } l \in \overline{K+1, D} \end{cases}$ to obtain

$$\Delta = \langle \delta_l \mid l \in \overline{1, D} \rangle_K \quad \square$$

IN VIRTUE of **LEMMA 47.**, THERE EXISTS $\Delta \subset T_g G$ s.t.

$$\Delta \oplus \text{Ker } T_g t = T_g G = \Delta \oplus \text{Ker } T_g s.$$

CONSIDER NEIGHBOURHOODS of $g \in G$ & $s(g) \in M$ with RESPECTIVE COORDS s.t. THE CORRESPONDING COORDINATE PRESENTATION of s is

$$pr_1 : \mathbb{R}^{\dim M} \oplus \mathbb{R}^{\dim g - \dim M} = \mathbb{R}^{\dim M} \longrightarrow \mathbb{R}^{\dim M}$$

with THE COORDINATE DERIVATIONS COINCIDING with THE BASIS of $\Delta \subset \text{Ker } T_g s$ (i.e., COORDS ADAPTED to THE SPLITTING $\Delta \oplus \text{Ker } T_g s$)

TAKE A LOCAL SECTION σ of s with THE CANONICAL PRESENTATION in THE CHOSEN COORDS. By CONSTRUCTION $T_g(t \circ \sigma)$ is ISO, & so - by THE INVERSE-FUNCTION THEOREM - $t \circ \sigma$ is DIFFEO on SOME NEIGHBOURHOOD U of $s(g)$. WE THEN TAKE $\beta = \sigma|_U$. □ 23

Prop. 48. For any Lie Groupoid $Gr = (M, G, s, t, Id, inv, \iota)$ & any $m \in M$, the restriction $t|_{s^{-1}(\{m\})}$ of t to the source fibre has constant rank.

Proof: Consider any two points $g, h \in s^{-1}(\{m\})$.

As $t(g^{-1}) = s(g) = m \equiv s(h)$, the arrow $h \cdot g^{-1}$ is well-defined,

& so there exists a local bisection $\beta \in \text{Bise}(Gr)_{loc}$

with the property $\beta(t(g)) = \beta(s(h \cdot g^{-1})) = h \cdot g^{-1}$, which

implies $\tilde{t}_* \beta(t(g)) = t(h \cdot g^{-1}) = t(h)$ for (see: **Def. 39.**)

$\tilde{t}_* : \text{Bise}(Gr)_{loc} \rightarrow \text{Diff}(M)_{loc}$

: $\beta \longmapsto t \circ \beta$

Denote $U := \text{Dom}(\beta) \subset M$ & $V := \tilde{t}_* \beta(U) \subset M$, (24)

SO THAT WE OBTAIN THE DIFFEOMORPHISM (SEE: DEF. 40.)

$$\tilde{L}_\beta : t^{-1}(u) \xrightarrow{\cong} t^{-1}(v) : k \mapsto \beta(t(k)).k.$$

NOTE THAT $\tilde{L}_\beta(g) \equiv \beta(t(g)).g = h.g^{-1}.g = h$.

AS $s \circ \tilde{L}_\beta = s$, WE SEE THAT \tilde{L}_β RESTRICTS TO A DIFFEO
ON EACH s -FIBRE WITHIN $t^{-1}(u)$. (THE STATEMENT MAKES SENSE
IN VIRTUE OF THE CONSTANT-RANK LEVEL-SET THEOREM [Lee 2012, Th^{5.12}])
AS THE s -FIBRES ARE PREIMAGES OF POINTS IN M ALONG
THE SUBMERSION s .) MOREOVER,

$$t \circ \tilde{L}_\beta = t \circ \beta \circ t = \tilde{t}_* \beta \circ t,$$

AND SO WE HAVE A COMMUTATIVE DIAGRAM

$$\begin{array}{ccc}
 t^{-1}(U) \cap s^{-1}(\{m\}) & \xrightarrow{\tilde{t}_\beta \upharpoonright_{s^{-1}(\{m\})}} & t^{-1}(V) \cap s^{-1}(\{m\}) \\
 \downarrow t \upharpoonright_{s^{-1}(\{m\})} & \mathfrak{H} & \downarrow t \upharpoonright_{s^{-1}(\{m\})} \\
 U & \xrightarrow{\tilde{t}_* \beta} & V
 \end{array}$$

THE HORIZONTAL ARROWS in IT REPRESENT DIFFEOS, of which THE UPPER ONE TAKES g to h . HENCE,

$$\text{rk } t(g) = \text{rk } t(h) . \quad \square$$

THE LAST RESULT HAS IMPORTANT CONSEQUENCES...

DEF. 49. LET $Gr = (M, g, s, t, Id, \mu_r, m)$ BE A LIE GROUPOID, & LET $m \in M$ BE ARBITRARY. THE ISOTROPY GROUP of m IS THE SUBSET

$$G_m := s^{-1}(\{m\}) \cap t^{-1}(\{m\}) \subset G$$

WITH THE MULTIPLICATION & INVERSE MAPS OF G RESTRICTED TO π , & WITH $\bullet \mapsto \overline{Id}_m$ AS THE GROUP UNIT.

PROP. 50. THE ISOTROPY GROUP OF ANY POINT IN THE OBJECT MANIFOLD OF A LIE GROUPOID IS A LIE GROUP.

PROOF: Fix $m \in M$. THE ISOTROPY GROUP G_m IS THE PREIMAGE of $\{m\}$ along THE RESTRICTION OF t TO THE s -FIBRE $s^{-1}(\{m\})$. BUT BY PROP. 48., $t|_{s^{-1}(\{m\})}$ HAS CONSTANT RANK, & SO - (27)

IN VIRTUE OF THE CONSTANT-RANK LEVEL-SET THEOREM [Lee 2012, Th^{5.12}]

G_m IS A SUBMANIFOLD IN $S^{-1}(\{m\})$, i.e., IT IS, IN PARTICULAR, A MANIFOLD. NOW, THE RESTRICTIONS OF m & Inv TO G_m ARE SMOOTH, & SO THE QUADRUPLE

$$(G_m, m|_{G_m \times G_m}, \text{Inv}|_{G_m}, \cdot \mapsto \bar{Id}_m)$$

IS A GROUP OBJECT IN Man , i.e., A LIE GROUP. \square