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([MMrO3]). Let Gr=(M,¥,s,t,1d,Inv,.) be a Lie groupoid. A (global) bisection]of Gr is

a section o: M — & of the surjective submersion s: ¢ — M such that the induced map
tio=toc: M — M

is a diffeomorphism. Equivalently, it is a submanifold S c & with the property that both restrictions: s| 5 and t| s
are diffeomorphisms. We shall denote the set of bisections as Bisec(Gr).
Allocal bisection|of Gr is a local section 0: O — & of s over an open subset O ¢ M such that the induced

map
t,o=too:0 — too(O) E
is a diffeomorphism. We shall denote the set of local bisections as Bisecj,.(Gr). //,

Definition 9 The| group of bisections| of Gr is the canonical structure of a group on Bisec(Gr). Its

binary operation is defined as

-+ Bisec(Gr) x Bisec(Gr) — Bisec(Gr): (02,01) —> 02(to01(-)).01(-) = 02 0y .

The neutral element is 1d, termed the in the present context, and the corresponding inverse is
Inv: Bisec(Gr) — Bisec(Gr): > Invo o (t*ﬁ)_l = gL,

= 6,(t(,(m))) 7, (m)

ﬁ | Mor(Gr) «®- 5,6, (m)

8- 0,(t(c,(m)))

/ \ A—\a.(in)
/ \ | Ob(Gr) =M

t(0,(t(c; (m)) t(c; (m))
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[ ]
P AcTions :
Definition ;‘ The|left regular action of IB| (on itself) is

0:BxB— B: (v,B) — v-=4,(B),
and the|right regular action of 1B (on itself) is
p:BxB—B:(B,7) — B-r=0(B)-
Theladjoint action of B on itself is
. c:BxB — B:(7,8) — 7-B-7 ' =cy(B)-
| Definition 40 | The|shadow action of B on M| is
te: Bx M — M: (0,m) — t(o(m)).

By the usual abuse of the notation, we shall refer by the same name and use the same symbol for the group
homomorphism ON

t.: B — Diff(M).

| Definition A l The |left-multiplication of & by | is the left action
L:BxY —%:(0,8)— 0(t(g))g=Ls(g)=0>g.
SIN %

The kight-multiplication of 4 by H is the right action

R B — - (3,0) — . (5(2)))
The lconjugation of & by B is the left action

Rg(g) =gd0.

C:BxY —9:(0,8) — 0(t(g))-g0(s(g)) =Co(g)=opgac™.
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[Definition Y& | A Lie groupoid % is called Id-reducible|if for each g € 4 there exists B ¢ B such that
g =B(s(g)), i.e., if there is a global bisection through every arrow.

[Remark §% | The name is justified by the following simple observation: The condition ¢ = B(s(g)) is satisfied
iff § = Rp(Idy(q))- Note, e.g., that the action groupoid of Ex. A8 is manifestly 1d-reducible.

leouBVER. |

Theorem4{ . [ZCLO9, Thm. 3.1] Every Lie groupoid with connected fibres of the source map is Id-reducible.

Remark U5, The significance of the assumption of s-connectedness of ¢ is emphasised by the following counter-
example, which we borrow from Ref. [SWo16, Rem.2.18b)]. Take any two non-diffeomorphic manifolds M and
N, and consider the pair groupoid Pair(M u N) = Gr of their disjoint union, with Bisec(Gr) = Diff(Mu N).
Pick arbitrary points m € M and n € N. Clearly, there is no global bisection through (n,m) e Mor Gr (here, we

view M and N as submanifolds in M u N) as there is no (global) diffeomorphism M — N, which could map
m—s n.
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