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Abstract

We present formulae for the mass differences AMy and AM; in the BS7S—B37S Sys-
tems and for the CP violation parameter € which are valid in minimal flavour viola-
tion models giving rise to new four-fermion AF = 2 operators. Short distance con-
tributions to AM;, AM, and ¢ are parameterized by three real functions Fj, FiZ and
F%, respectively (F, = F = FZ holds only if the Standard Model (V —A)® (V — A)
operators dominate). We present simple strategies involving the ratio AM,/AMy,
sin 23 and « that allow to search for the effects of the new operators. We point out
that their sizable contributions to the ratio AM;/AMy would in principle allow v
to be larger than 90°. Constraints on the functions F}, imposed by the present (and
future) experimental data are also discussed. As an example we show that for large
tan 8 = vy/v; and HY not too heavy, Fj in the MSSM with heavy sparticles can
be substantially smaller than in the SM due the charged Higgs box contributions
and in particular due to the growing like tan? 5 contribution of the double penguin
diagrams involving neutral Higgs boson exchanges. As a result the bounds on the
function F} can be violated which allows to exclude large mixing of stops. In this
scenario the range of sin 23 following from ¢ and AM, is identical to the SM ones
(0.5 < sin 28 < 0.8). On the other hand v following from AM,;/AM, is lower.



1 Introduction

The determination of the CKM parameters and of the related unitarity triangle (UT)
are the hot topics in particle physics [[l. In this context a clean measurement of the
angle 3 in the unitarity triangle through the time dependent CP asymmetry, ayx.(t), in
BY(BY) — ¢ Ks decays is very important.

In the Standard Model (SM)

ayrcs(t) = — ayrg sSin(AMgt) = —sin 25 sin(AMgt), (1.1)

thereby allowing direct extraction of sin 25. The most recent measurements of a,x, from
the BaBar and Belle Collaborations give

0.59 +0.14 + 0.05 (BaBar) |2
UypKs = { ( ) 2 (1.2)

0.99 +0.14 +0.06 (Belle) [F].

Combining these results with earlier measurements at CDF (0.79%5:31) [A] and by the
ALEPH collaboration (0.84%9%% £ 0.16) [H] would give the grand average

ayr, = 0.79+0.10 (1.3)

but in view of the fact that BaBar and Belle results are not fully consistent with each
other we believe that a better description of the present situation is ayx, = 0.80 4 0.20.

Similarly important for the determination of the unitarity triangle will be the mea-
surement of the ratio of the mass differences in the 3375—3375 systems, AM,/AM,. The
experimental values of AM,; and AM, read [f]

AM,; = (0.487 £ 0.009)/ps , AM; > 15.0/ps , (1.4)
implying
AM,
> ] 1.
A, 230/ (1.5)

which is compatible with the SM expectations. Because theoretically this ratio is con-
siderably cleaner than AM, and AM; themselves, its precise measurement will have an
important impact on the determination of the unitarity triangle and on the tests of the
SM and its various extentions. As emphasized in ([, [, B, f, [0] this impact will be
even stronger in conjunction with the measurement of ayx,. It is therefore exciting that
AM;/AM, should be measured already this year in Run II at Fermilab, while improve-
ments of the ayx, measurements are expected from BaBar, Belle, CDF, D0 and, at later

stages, from BTeV and LHC experiments.



The result ([.3) for ayk, should be compared with the value of sin 23 obtained from the
analyses of the unitarity triangle in the framework of the Standard Model (SM) [fll, [, [LT]
that center around (sin28)sm & 0.70 with estimated errors ranging from 0.07 to 0.24.
Clearly in view of large experimental error in ([L.J) and the considerable uncertainty in
the error estimates of (sin 23)sm, the SM fits are compatible with the experimental value of
ayrs- The small value of ayx, found earlier by the BaBar collaboration [[J] has not been
confirmed by most recent data. On the other hand, the large value of ayx, measured by
the Belle collaboration may be suggestive of new physics contributions to BY(BS) — ¥ K,
3375—3375 mixing, K% K° mixing and/or the parameter ¢ measuring CP violation in the
K° K° mixing. Thus the analyses [[0], [[d]-[RI] of new contributions done in the context
of small ay . value reported by BaBar [[Z] could still be relevant if properly reformulated.
Such new contributions could modify not only the relation between ayx, and sin23 in
(1) but also the value of sin 23 obtained from the fits of the unitarity triangle.

In general models of new physics potentially contributing to ayx,, AMy s and/or ¢ fall

into the two following broad classes [[I|J:

e Models in which the CKM matrix remains the unique source of both, flavour and
CP violation. The effects of this source are however modified by the new interaction

vertices (of new particles) in which the CKM matrix elements appear.
e Models with entirely new sources of flavour and/or CP violation.

The first class can be conveniently further subdivided into the so-called MFV models
B2, A and the generalized MFV models (GMFV).

The characteristic feature of the MVF models (MVF scenarios of new physics) is the
strong dominance in their low energy effective Hamiltonian of the same operators that
occur in the low energy effective Hamiltonian of the SM. In such models the formula ([[.1])
remains valid and the relation between the ratio AM;/AM; and the length of one side
of the unitarity triangle, R;, is as in the SM: it remains independent of the parameters
of the particular model. Thus, for this class of models the unitarity triangle is universal
[]. The distinction between different models of this class can then be made through the
study of £ and AM; which in contrast to ayx, and AM;/AM,; do depend explicitly on
new physics contributions. A detailed analysis of the profile of the UT in supersymmetric
scenarios of this class can be found in [ff]. Other discussions of the MFV models can be
found in [[9, B0, B3]

The GMFV models generalize the MFV models by allowing for significant contribu-
tions of the nonstandard operators in the effective low energy Hamiltonian. In this class

of models the formula ([[.1)) is still valid but the relation between AM;/AMy and R; is



modified. Hence, R; determined from the measured ratio AM;/AM, does depend on the
parameters of the model.

While the presence of new CP violating phases in Bgﬁ—Bg’s mixing and K°-K° mixing
could turn out to be necessary to explain the future precise value of ayx,, it is important
to investigate first the scenarios that do not invoke new sources of flavour and/or CP
violation. It is therefore useful to analyze first MFV and GMVF models that are more
constrained than the more general scenario mentioned above.

It turns out that in the MFV models there exists an absolute lower bound on sin 23 [[0]
that follows from the interplay of AM, and ¢ and depends mainly on |V.;|, | V. / Ve | and the
non-perturbative parameters BK, FBd\/Bin entering the analysis of the unitarity triangle.
An updated conservative lower bound on sin 2/ obtained by scanning independently all

relevant input parameters reads [[I]
(sin 28 )min = 0.42 . (1.6)

As analyzed in [[[0, [}, this bound could be considerably improved when the values of |V.|,
|Vin / Vs, BK, FBd\/Bin, will become better known or if AM, is measured so that the
ratio AM,/AM, can be used, along with the non-perturbative parameter £, to determine
the length of one side of the UT. The lower bound ([.]) is fully consistent with the
experimental data but as the latter are not yet very precise it could prove useful when the
knowledge of | V|, |Vis/Vas|, BeK, FBd\/Bin’ AM, and ¢ improves. Note that the bound
([-4) allows values of sin 2/ that are slightly smaller than the ones obtained from the fits
to the unitarity triangle within the SM, (sin28)sy > 0.5. In view of the unexpectedly
high value of ayr, found by the Belle collaboration [B], more interesting at present appears
the upper bound on sin 23 in MFV models that reads [§, 3]

(sin 28)max = 2Rp\/1 — R? . (1.7)

Here R, is the lenght of one side of the unitarity triangle (see fig. [[) given in terms
of |Vis/Vas| in eq. (B14). With the input parameters specified in table 1, one obtains
(sin 2)max = 0.82 that is fully consistent with the BaBar result [J] but appears to be
violated by the Belle result [J]. We will return to this issue in the course of this paper.
The natural next step is to exploit GMFV models. In the present paper we would like
to make this step and present general formulae relevant for the analysis of the unitarity
triangle and sin 23 in the GMVF models.

Examples of the MFV models are the Two Higgs Doublet Models IT (2HDM(II)) and
the MSSM, in which sfermion mass squared matrices are aligned with the corresponding

fermion mass matrices and the CP violating phases of the gaugino masses, p and A



parameters are all set to zero, provided the ratio of the vacuum expectation values of
the two Higgs doublets, vy/v; = tan 3 is not too large. It is well known [F4, BJ] that in
both these models the contribution of light charged Higgs boson and/or (in the case of
supersymmetry) charginos and stops to the Wilson coefficient of the standard (V — A) ®
(V — A) operator can significantly enhance the tW# contribution to AM;, AM,; and «.
In this paper we show that for large tan 3 = vy/v; both models become GMFV models.
In particular in the MSSM in the limit My $ Mg+ < Mgparticle, Which we consider here
for simplicity, we find that:

e There can be significant contributions to AM; from the charged Higgs box diagrams
(growing like tan? 3 at the 1-loop level and faster after including leading higher order
corrections) and, growing as tan* 3, contributions arising from the double penguin
diagrams involving the neutral Higgs scalars. Compared to the contribution of the
extended Higgs and chargino/stop sectors relevant for low tan 3, the interesting
feature of all these new contributions is their sign which is opposite to the standard
tW# box contribution.

e Compared to AM;,, the corresponding contributions to AM,; and ¢ are suppressed

by the quark mass ratios mg/mg and my/my, respectively.

e Consequently, in this scenario sin 23 cannot deviate significantly from its SM value,

i.e. the lower bound ([[.6) can never be reached.

e Present experimental data strongly limit large mixing of stops if their mass difference

is large compared to the electroweak scale.

o If ayx, is found below 0.5 or above 0.82 this particular supersymmetric scenario will
be disfavoured (together with the SM). If ayx, & 0.7 this scenario can lead to the v
angle slightly smaller (depending on the measured value of AM;) than in the SM.

The full MSSM with large tan 3, including the effects of light sparticles, will be analyzed
in the forthcoming paper [20].

Our paper is organized as follows. In section 2 we generalize the MFV formulae
of [0, @, ] to GMFV models. While in MFV models the new physics short distance
contributions to Bgﬁ—Bg’S mixing and € can be described by only a single function Fj,
the transition to the GMFV models (in which new operators contribute) requires the
introduction of three real functions F, F}$ and Ff. We present simple strategies involving
the ratio AM;/AM,, sin 283 and the angle v that allow to search for the effects caused by
s,d,e

new operators (sec. 2.3) and discuss model independent bounds on the functions F};

which follow from the present and future experimental data (sec. 2.4). We also point out
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that in this class of models the function F}, can be directly measured through AM; and
that the angle v could be larger than 90°. The formulae necessary to express the functions
F ;’d’e directly in terms of the Wilson coefficients of the four-fermion operators are collected
in Section 3. The 2HDM(II) and the MSSM with large tan 3 = vy /v; and heavy sparticles
are discussed in Section 4. We give complete formulae for the one loop contribution of
the box diagrams involving charged Higgs bosons and derive simple approximate formulae
describing the dominant effects of the double penguin diagrams. Consequences of their
large contribution and implications of the bounds presented in sec. 2.4 are also discussed.

We conclude in Section 5.

2 Basic Formulae

2.1 Effective Hamiltonian in GMVF Models

The effective weak Hamiltonian for AF = 2 transitions in the GMVF models can be

written as follows Y
AF=2 Gy My,

ff T 162

ZVéKMOi(M)Qi . (2.1)

Here Q; are AF = 2 operators, G is the Fermi constant and Viy,; is the appropriate
Cabibbo-Kobayashi-Maskawa (CKM) factor. Because in the GMFV models the CKM
matrix is by definition the only source of flavour and CP violation, the Wilson coefficients
Ci(p) are real. Using this Hamiltonian with the Wilson coefficients evaluated at the ap-
propriate scale p one can calculate AF = 2 amplitudes, in particular the mass differences
AM, s and the CP violation parameter ¢ measured in K — 77 decays.

The full set of dimension six operators contributing to AF = 2 transitions consists of
8 operators. According to the chirality of the quark fields they can be split into 5 separate
sectors. The operators belonging to the VLL, LR and SLL sectors read:

VMY = (dyyuPrdr)(dsy" Prdy),

Q" = (dyvuPrdr)(dsv" Prdy),
YR = (djPpd;)(dyPrdr),

T = (dyPudp)(dyPrdy),
§LL = (CZJUﬂyPLd[)(CZJJMDPLd[), (22)

where [, .J are the flavour indices (i.e. d3 = b, dy = s, d; = d and, analogously, us = {,

Uy = €, Uy = U), Oy = %['yﬂ,%], Prr = %(1 F v5) and the colour indices are contracted
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within the brackets. The operators belonging to the VRR and SRR sectors are obtained
from QY™ and Q" by interchanging Pr, and Pg. Since QCD preserves chirality, there
is no mixing between different sectors. Moreover, the QCD evolution factors from high
energy to low energy scales in the VRR and SRR sectors are the same as in the VLL
and SLL sectors, respectively. However, one should remember that the initial conditions
Ci(pe) (where py = O(my)) are in general different for operators involving Pj, and Pg.
In the limit in which the effective Hamiltonian (B-1]) is dominated by the single QY
operator one recovers the results of the MFV models.

The QCD renormalization group factors relevant for the Hamiltonian (P.1]) have been
calculated at the NLO level in [27, BS, B9, B0, BIl, B where the last four papers deal
with the LR and SLL(SRR) operators. In particular in ref. [B3] master formulae for
AF =2 NLO QCD factors relating C;(u:) to C;(p) where py = O(my) and g = O(my) or
= O(2 GeV) have been presented and evaluated numerically in the NDR renormalization
scheme. Below we will exploit the general formulae of ref. [B7] expressing AM;, AM, and

¢ in terms of the non-perturbative parameters B;.

S04 |
0.3
0.2

0.1

—0.1 | | \ | | \ | | \ | | \ | ‘

Figure 1: Unitarity Triangle.



2.2 AM,, AM,, € and sin 23 in the GMVF Models

It is straightforward to generalize the formulae of refs. [, [0, B, B3] to the case of GMFV

models. To this end, following the notation of ref. [[]], we introduce three real functions
Fiy=So(z)[l+ fal . Fi=So(z)ll+ L], Fi=So(z)ll + [, (2.3)

relevant for AMy, AM; and ¢ respectively. So(x;) with z; = m?/M, is the function
resulting from box diagrams with (¢, W) exchanges. So(z:) &~ 2.38 & 0.11 for my(m;) =
(166 £ 5) GeV. In order not to complicate the expressions below we assume F}, > 0.
Generalization to negative F}, can be easily done following the discussion of ref. [Z3]. We

further split the parameters f; into universal and non-universal parts

fi = funi + i (2.4)
where f; = 0 in the MFV models [[0]. We have then,

G2 M3,

AM, = T

Mg UBBBqFé Vi *F, q=d,s (2.5)

where Fp, is the B,-meson decay constant, EBq is a non-perturbative parameter and
ng = 0.55 is the QCD factor [£7, B§]. The measurements of AM, determine the length
R; of one side of the unitarity triangle (shown in fig. [l)) defined by

R |‘/td‘/tb| — (1_@)2_|_772:l %
ch

2.6
|V Vil A (26)

Here g = o(1 — A?/2), 7 =n(1 — A*/2) [§], and A, ¢ and n are the Wolfenstein parameters
B3. As in ref. [B3] we set A = 0.222 in the analytic formulae below.f] Other input

parameters are collected in table [I.

From AM; and AM;/AM; we find
230 MeV

Ry AM, 0.55
R, =1.084 — R 2.7
! A \/7 0= \ 0.487 /ps \/gFBd V 7 (2.7)

AM,; [15/ps
=0.81 !/ VRsd 2.
R = 0819 ¢ 0.487/ps \| AM, Rea (28)

*Because of that some numerical factors in the formulae below differ from their counterparts in refs.

and

[m, E] where A = 0.220 has been used. This change has only a very small impact on the numerical
analysis. In particular the bound (E) remains unchanged. On the other hand the increased value of A

shifts V,,4 closer to its experimental value. See ref. [@] for the discussion of this point.



Table 1: The ranges of the input parameters.

Quantity | Central value Error
A 0.222 +0.0018
|V 0.041 +0.002
|Vin / Vs | 0.085 +0.018
|Vis] 0.00349 +0.00076
By 0.85 +0.15
€ 2.280 x 10™% | £0.013 x 107
VBeFs, | 230 Mev +40 MeV
Bg.Fa, 265 MeV +40 MeV
£ 1.15 +0.06
My 166 GeV +5 GeV
AM, 0.487/ps +0.009/ps
AM; > 15.0/ps
Mw 80.4 GeV

respectively where the Wolfenstein parameter A is defined by |V.3| = AM?. Here

L+ fs Fp.\/Bs,
Ru=PrE o TevTe 2.9)
d Fg,\/ BB,
The measurement of the parameter ¢ imposes the constraint which reads:
7|(1 = 2) A%l + Pu(e)| ABx =0.204 | (2.10)

where 1y, = 0.57 is the QCD factor 7] and P.(¢) summarizes the contributions not

proportional to V;*V;;. With (R7) and (B.10), the formula of ref. [[0] for sin 23 valid in
MFV models generalizes to

1.65 0.204 1+ f

Siﬂ Qﬂ = R%nz Rds AQBK — 77 .

(2.11)

Note that new physics can affect sin28 both through f; and f. in (E.I1]) and indirectly
through 7. We assume as in [f, [[0] that new physics contributions to P.(¢) are negligible.
In this case P.(¢) = 0.30 £+ 0.05 [B4].



2.3 How to distinguish GMFV from MFV

In general, the presence of new AF = 2 operators causes the departure from the rela-
tion Fi = F3 = Ff valid in the MFV models. This means for instance that the ratio
AM;/AM,, being now dependent on new physics contributions, cannot be used any longer
for the construction of the universal unitarity triangle [A]. In other words the dictionary
between R; and AM;/AM,, as given by (B.§), differs from the corresponding one in the
MFYV models because Ry # 1. This fact offers a possibility to distinguish experimentally
between these two classes of models. Two strategies are presented below. Because of the

unitarity of the CKM matrix these strategies are related to each other.

2.3.1 Strategy A

For given values of |V,;/V.s| and AM;/AM, one can determine (see fig. [I])

TR R — z2 1
R = v v — 2 2: 1__ J—
R T 71 B AR R

and R; by means of (P.§), respectively. This gives the apex of the unitarity triangle with

v
Ve

: (2.12)

_ 1 _ -
o=s(I+ B —R), n=\R -0 (2.13)

and consequently

2n(1 — o)
R}

These formulae establish the relation between sin 28 and AM;/AM, that depends on

the ratio Rs. In fig. f| we show sin23 as a function of AM,/AM, for |V,/Va| =

0.070, 0.085, 0.10 and different values of the ratio Rsy. To this end we have set £ = 1.15.

We observe that for AM,/A M, below 40 the distinction between GMFV and MFV models

will be difficult unless the values of &, |V / Vi, ayry and AM; will be known very accu-

sin2f3 = (2.14)

rately or the value of Ry differs substantially from unity. For larger values of AM,;/AM,
the distinction is clearer.

From fig. B the impact of the measurement of AM,/AM; on the allowed values of
sin 23 is clearly seen. For 0.8 < R,y < 1.2 and AM,/AM,; < 40 only values compatible
with current experimental result ([.3) and well above the bound ([[.]) are allowed. On
the other hand, for sufficiently low or sufficiently large values of R4, smaller values of
sin 2 are also possible. While such low values of sin2f are still compatible with the
BaBar result, they seem to be excluded by the Belle measurement of ayx,. In fact, as

follows from fig. B, the latter measurement can be accomodated only if R,y ~ 1 and
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Figure 2: sin 2/ as a function of AMy/AM, for |V,,/Vas| = 0.070 (panels a and d), 0.085
(panels b and e), and 0.10 (panels ¢ and f) for different values of Rs; (marked on the
curves) and & = 1.15.

It is also easy to find that the two possibilities, small R,y and large R4, favour small
and large values of the angle 4 in the unitarity triangle, respectively. Which of these two
possibilities is favoured by the data can only be decided by other measurements. This
includes e, AM, alone and in particular a direct measurement of «. This brings us to the

second strategy.
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2.3.2 Strategy B

The angle v in the unitarity triangle can be found from R; and 8 determined through

(L) by using the relation
1— Ricosf

Rysin g
Expressing Ry in terms of AM;/AM, by means of (B.§) allows to calculate v as a function
of sin28, AM;/AM,; and Rs;. For Ry # 1 the predictions for v in GMFV models will
generally differ from those in the MFV models. Comparing these predictions with future

coty = (2.15)

direct measurements of v it will be possible to distinguish between these two classes of
models and check whether the inclusion of new operators is required by the data. In fig. f§
we show v as a function of AM,/AM, for sin28 = 0.4, 0.6, 0.8 and various values of
Rsq.

We observe that the distinction between MFV and GMFV models in this strategy is, in
contrast to strategy A, very transparent in the full range of AM,/AM; considered. As this
strategy involves only ayx, and AM;/AMy, that are theoretically cleaner than |V, / V|,
it is this strategy which in the future should play the crucial role in the distinction between
the MFV and GMFV models. The ratio AM;/AM,; and the asymmetry a,x. should be
determined very precisely in the coming years. The determination of v is more difficult
but should be achieved at LHCb and BTeV. Some information on the angle v should also
be gained from the B; — mK decays measured by CLEO, BaBar and Belle and by the
combination of B; — 777~ rate (already measured by these three collaborations) and
the rate of the B; — K™K~ decay [BY] which are going to be measured at Tevatron.

As seen in fig. [} the values of v for R,y < 1.2 are below 90°. On the other hand for
substantially higher Rs4 also 4 > 90° is possible. The possibility of 4 > 90° resulting from
the unitarity triangle fits is very interesting in view of several analyses [Bf], B7, BY, BY]
of two-body non-leptonic decays B — 7K, wm that favour v > 90° in contradiction
with the usual unitarity triangle analyses that confidently give v < 90°. With increasing
AM;/AM, this problem will become more serious.

In view of sizable theoretical uncertainties in the analyses of B — 7 K, mm and of large
experimental errors in the corresponding branching ratios it is not yet clear whether the
discrepancy in question is serious. For instance [[t(] sizable contributions of the so-called
charming penguins to the B — 7 K amplitudes could shift v extracted from these decays
below 90° but at present these contributions cannot be calculated reliably. Similar role
could be played by annihilation contributions and large non-factorizable SU(3) breaking
effects [Bf]. Also, a new physics contribution in the electroweak penguin sector could also
shift v to the first quadrant [Bf]. It should be however emphasized that the problem with
the angle ~, if it persisted, would put into difficulties not only the SM but also the full
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Figure 3: v as a function of AM,/AM, for sin28 = 0.4, 0.6, 0.8 and various values of

Rsq (marked on the curves).

class of MFV models in which the lower bound on AM;/AM, implies v < 90°. On the
other hand as seen in fig. [ for sufficiently high values of R,q, the angle 4 resulting from
the unitarity triangle analysis can easily be in the second quadrant provided AM,;/AM,
is not too large.

Clearly a general analysis of the unitarity triangle involving e, AM; 4, |Vip/Ves| and
|V.p| can also be used to search for the effects caused by the new operators but the two

strategies outlined above have in our opinion the best chance to distinguish between MFV
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and GMFV models in a transparent manner.

2.3.3 Unitarity Triangle, sin 28 and ~

A different version of strategy B is to construct the unitarity triangle by means of the
ratio AM;/AM, and the asymmetry ayx.. With R; given by (P.§) the parameters g and

i can be determined from the formulae]]

% <\/1 +sin 28 — \/1 — sinQﬁ)
1— % <\/1 +sin28 + /1 - siHQﬁ) (2.16)

3
I

ey
I

(recall that in in GMFV models sin 28 = ayk,) obtained directly from eqs. (E.6) and
(E.14). These formulae are equivalent to those presented in [f, B3] but are more elegant.

As an illustration we show in fig. f] the ranges of (g,7) allowed by the hypothetical
measurement AM; = (18.0 + 0.5)/ps for three values of ayx, and different values of Rs,.
Solid ellipses correspond to R,y = 1 valid in particular in MFV models. We also show the
Ry-constraint, eq. (B-17), with R, = 0.37 + 0.08 and as a useful reference the e-constraint
(BI0) with 1+ f. =1 corresponding to the SM.

From fig. [l it is clear that for ayx, = 0.80+0.05 the class of models giving Ry = 1 and
1+ f. = 1 (which includes also the MFV models) is consistent with all constraints but only
for sin23 in the lower part of the chosen range. There is also a room for contributions
of new operators resulting in Ry; # 1 provided 0.7 < Ry < 1.4. As in strategy B
they could be distinguished through the value of the angle v. We also observe that no
sizable contributions to ¢ beyond the SM ones are required. For ayrx, = 0.60 £ 0.05
models giving R,y = 1 are consistent with the Rp- and e-constraints for sin2f in the
full chosen range. In this scenario models with 0.8 < R,y < 2.0 and no sizable new
contributions to ¢ and models with Ry; < 0.8 but with 1 + f. > 1.0 are favoured. Again
the measurement of 4 could distinguish between these possibilities. It is interesting to
note that for 1.5 < Ry < 2.0 it is possible to have v > 90 even for 1 4+ f. = 1. Finally, for
ayr, = 0.4 models giving R,; = 1 are ruled out as they do not satisfy the Rj-constraint.
In order to reconcile this constraint with ayx . ~ 0.4, values of R,; substantially different
from unity are required. Moreover in the case of Rsy < 1.0 one has v < 90° but large
new contributions to ¢ leading to 1 4+ f. > 1.0 and R4. < 1.0 are mandatory. In contrast,
if Rsq 2 2.0 4 can be much bigger than 90° even without new contributions to € i.e. with

1+ f.=~1.
tThis is valid for —7/4 < 8 < 7/4; for other ranges of 3 similar formulae can be obtained.

13
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Figure 4: Ranges of (p,n) allowed in 1o for AM; = (18.0 £+ 0.5)/ps, three values of ayx,
and different values of R,y (marked in the figures). Black spots correspond to Ry = 1.
Dotted lines show the constraint from the parameter ¢, eq. (.10), for 1 + f. = 1.
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Figure 5: Lower bound on sin 23 in GMFV models as a function of the ratio R4.. Dashed
lines show the 1-sigma BaBar result (sin 28 = 0.59 +0.15), the horizontal solid line shows
the lower limit from the Belle measurement (sin 23 = 0.99 + 0.15) and the shaded area
corresponds to the sin 23 range presently allowed in GMFV models at 1o by the official
grand average ([3).

As in some scenarios discussed above R;. must differ from unity, we show in fig. f] the
dependence of the lower bound for sin 28 on the value of R;. together with the 10 BaBar
result and the present official experimental 1o band ([.J) for ayx, = sin23. It follows,
that at present the ratio R4 would be constrained at 1o by the BaBar result to be less
than 2.2 but the analogous limit following from the grand average ([[.3) is much higher.
Fig. [l has been obtained for Rsy = 1.0 but (sin 23 )min depends only very weakly on the

ratio Ry4: very similar curves are obtained also for 0.6 < R,y < 2.0.

2.4 Constraints on GMFV models from unitarity triangle

In the preceding subsection we have presented two strategies which in principle should
allow to decide on the basis of experimental measurements whether going beyond the
MFV models is necessary, i.e. to establish whether R,y # 1. In this section we want
to explore constraints and correlations imposed by the experimental data (present and
future) and the unitarity of the CKM matrix on the functions F},. These constraints can
be then effectively used to test the specific GMFV models of new physics.

The first constraint follows from fitting the formula (B.5)) to the measured (in the near

15



future) value of AM;. This determines 1 + f; (or F}):

[ClEC I

265 MeV
Bp. Fp,

2.38
1+ f,=0.80 [ ]

So(x)

This formula follows also by equating R; determined from AM, alone (eq. (2.7)) and
R; determined from the ratio AM;/AM; (eq. (2.§)). Scanning over uncertainties in the
ranges specified in table [ and setting |Vi;| = |V gives
0.52 AM, AM,
15/ps 15/ps

(At present this gives of course 1 + f; > 0.52.) It is worth emphasizing that this bound

(2.18)

<1+f5<1.29[

is independent of the uncertainties of |V,;/ V.| as well as of any assumptions about pos-
sible new physics contribution in the K°-K° system. Therefore the GMFV models not
respecting it are (will be) ruled out. We will see in sec. 4.2 that the MSSM, for some
values of its parameters, violates precisely this bound.

Next, there are bounds on R; coming from the requirement that
1—-Ry< Ry <1+ Ry (2.19)

which gives 0.54 < R; < 1.46. This can be used to constrain either 14 f; or Rsy depending

on how one determines R;. In the first case one gets

020 <1+ fq<4.24 (2.20)
and in the second
AM, AM,
0.29 R, 2.73 . 2.21
l15/p8 = el S l15/ps] (221)

More stringent constraint on R,y (if R; is determined from (£§)) or 1 + f; (if R is
determined from (£.7)) will follow from R, combined with the information about sin 23
obtained from future accurate measurements of the asymmetry ayx,. It is easy to see

that for sin 28 < 0.34 there are two allowed bands of 1 + f; corresponding to two possible

R; = cos B F / R? — sin* 3 (2.22)

(the solutions with —(+) correspond to smaller (larger) values of the angle ). For larger

solutionsf] for R;:

values of sin 23 the two bands overlap which means that there is only one allowed range of

!The band of allowed R; values splits into two for sin 23 a 0.56 corresponding to sin 3 = R})nin.
Additional uncertainties in translating R; into 1+ f4 (or Rs4) result in lowering the value of sin 23 below
which the two allowed bands of 1+ f4 (or Rsq) appear.
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Figure 6: Allowed bands of Ry as a function of AM,;/AM, for different values of sin 2.

1+ fa (or Rsq). For example scanning over uncertainties one obtains: 0.21 < 14 f; < 0.78
or 0.84 < 1+ f; < 4.15 for sin2f = 0.2, 0.23 < 1 + f; < 3.85 for sin23 = 0.4,
0.26 < 1+ f; < 3.27 for sin28 = 0.6 and 0.44 < 1 + f; < 1.98 for sin2f = 0.8. The
corresponding allowed ranges of R, are shown in fig. [ for different values of sin 23 as
functions of the measured values of AM;/AM,.

Further constraints correlating 1 + f. with 1+ f; can be obtained by using the exper-
imental information about the parameter €. To this end, with a range of R; determined
from 1 + f; and AM, by scanning over the relevant uncertainties, one checks whether
there exist values of p and 7 satisfying eqs. (R.f]) and (R.I0) for a given value of 1 + f.. Tt
is easy to see that from AM,; and ¢ alone only a very weak lower bound on |1 + f.| can
exist for 1+ f; 2 1.8. As a next step, one can impose the constraint from R (eq. (2.13)).
The resulting allowed range in the plane (1+ f4, 1+ f.) is shown in fig. [a,b by the dashed
lines (their vertical parts correspond to the lower bound (P20])). For 1 + f; in the range
(B-20) no upper limit on |1 4+ f.| from AM,, ¢ and R, exists (except for a very narrow
range 0.7 < 1+ f; < 0.85). This is because for almost all values of 1+ f; satisfying (2.20)
the range of possible values of R; is such that it is possible to satisfy the constraint from
Ry with 7 = 0 which in turn allows to suppress arbitrarily large values of |1 + f.| and to
satisfy the eq. (R.I0).

It is also interesting to assume that the asymmetry ayx (i.e. sin 28 in GMFV models)

17



1+f,
1+f,

Figure 7: Allowed ranges of 1+ f; and 1+ f.. AMy, ¢ and Ry allow the region delimited by
the dashed lines. Regions between the solid lines are allowed by AMjy, ¢ and sin28 = 0.4
(panel a) and sin 283 = 0.8 (panel b). Dotted regions are allowed by AM,, ¢ and R, for
sin28 = 0.4 and 0.8 in panels a) and b), respectively.

is measured with sufficient accuracy and to correlate 1 + f. with 1 + f; by using the
experimental information about AM; and ¢ for fixed values of sin 23. To this end, for R;
given by eq. (.7) one determines the parameters p and 7 from the formulae (R.16) and
checks whether eq. (B:I7]) can be satisfied. Constraints on the plane (14 f;, 1+ f.) obtained
in this way are shown in fig. fla for sin23 = 0.4 and in fig. []Jb for sin23 = 0.8 by the
solid lines. It should be stressed that it is the constraint from the ayx, asymmetry which
eliminates solutions with 1 & 0 thus providing, for fixed 1+ f;, the upper bound on 1+ f..
In agreement with the bound ([.6]) we observe that for sin28 = 0.4, Rg. = (14 fa)/(14 /)
has to deviate from unity while for sin 23 = 0.8 points corresponding to R4. = 1 lie within
the allowed region.

Finally, one can impose also the constraints from R, (B.13). The allowed ranges in
the (1 + f4, 1+ f.) planes are dotted in figs. [Ja,b. They are not simply given by the
intersection of the regions allowed respectively by (AMy, ¢, Ry) and (AMgy, e, sin2p3)
because the same point in the (1 4+ fz, 1+ f.) plane may require different p and 7 to be
compatible with the two above sets of experimental data.

For a fixed value of the ratio AM,/AM; the same analysis can be also repeated for the
(Rsa, 1+ f.) plane. However, since the value of AM;/AM; serves only to determine R;
from eq. (P.§) we show instead in fig. § the allowed ranges in the plane (k R4, 1 + f.) where

18
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Figure 8: Allowed ranges of kRsq and 1 4+ f. where k = m. AM;/AM,;, ¢ and

Ry allow the region delimited by the dashed lines. Regions between the solid lines are
allowed by AM;/AM,, € and sin23 = 0.4 (panel a), sin28 = 0.6 (panel b), sin28 = 0.8
(panel ¢) and sin23 = 0.79 £+ 10 (panel d). Dotted regions are allowed by AM;/AMy, ¢,

Ry and the corresponding value of sin 24.

_ 30
Kk = AM./AM,

Panel d) corresponds to the averaged experimental value 0.80 + 0.11. Because of the

In this figure, panels a)-c) correspond to sin 23 = 0.4, 0.6, 0.8 respectively.
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absolute constraint (R.17), Rsq o< 1/(1+ f4) and qualitatively figs. Ba and §b are obtained
from figs. [Ja and []b, respectively by subjecting the z-axis to the transformation z — 1/z.
Quantitatively however, the bounds on GMFV models provided by fig. § are tighter as

they are independent of the poorly known parameter Fg, BBd-

3 General formulae for Fﬁ, F; and F;; in GMFV
Models

Using general formulae (7.27)-(7.32) in [B7] it is easy to express the functions F, F5 and
Fy, in terms of the Wilson coefficients at the scale at which the effective Hamiltonian is
generated, the relevant QQCD renormalization group factors n and the non-perturbative

B; factors. Suppressing the superscripts d, s and ¢ for a moment we find
1
Fu = [So(w) + 5Ok ()|
r
1 _ _
OV ) + PO () + PO ()

4r
PR CT ) + CF )| + PO ) + CF )] 31)

where r = 0.985 [B7] describes the QCD corrections to Sp(x:) in the SM. This factor is
present because we have factored out ng in (B.§) and 7, in the analogous formula for e.
The first line of eq. (B.1]) contributes to fun; in eq. (R.4) and is therefore present also
in the MFV models. The remaining lines are characteristic for the GMFV models and
contribute to the f; in eq. (B4). Thus, different values of the functions F, F% and F
originate from generally different values of the Wilson coefficients C'#(y;) and factors P?
pertinent to AMy, AM; and e:

pa — Pia/(477BB€BdVS) (AM,,)
Z PE/(4mBk)  (e) ’

(3.2)

where BBd,S and BK are the relevant non-perturbative parameters related to the matrix
elements of QY.

In the case of Fﬁ’s the coefficients P? are given by

k3

PlLPL = —% [ (o)1 [BlLR(Nb)LH + Z (21 (1)) [B%R(#b)}eﬁ‘7 (3:3)
PQLR - _% [ma(s)] LR {BlLR(’ub)Lff + Z [22()lm [BQLR(/“’)LH’ (3.4)
ﬁ“:—gmmmmﬁﬁmmmﬂ—%mmmmﬁ@“mmﬂ, (3.5)
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P = —g [z (an)lsie, [BY(w)] |, — g[nmwnm B )] o (36)

with the effective parameters [B? ()] ¢ defined by

[Bi' (1) = (mb(ubﬁg;@q(%)y&a(”b)
mb(jjf(;:i(ub)r [5.222\34?}qevr B (),

= 1.44 l (3.7)

where B (y1;) are related to the hadronic matrix elements (BYQ;|BY). The QCD factors
(ms(gm)], are given in [

In the case of Fy, the QCD factors [n;;(y)], are replaced with [n;;(pr,)], where p, =
2 GeV and the corresponding effective parameters [Bf(pr,)] g are defined by

2

115 MeV .
B(us). (38)

mg(pr) +ma(pr)

mg

ms(pr) + ma

Bl = W)Q B (ur) = 1875

The NLO QCD factors n;;(ps) and n;;(2 GeV), relevant for AM, 5 and ¢ respectively,
have been evaluated in [BZ]. For completeness we give in table P their numerical values
for different scales (denoted here by puxp) at which the new operators are generated.

The parameters B; for the K% K° mixing are known from lattice calculations [B1], []).
For the values corresponding to y; in the table f and in the NDR scheme one finds [BJ]:

PR = 361, P =593,

f — 2 GeV. 3.9
P = 181, PPV = —32.2,} ok ¢ (3.9)

The large values of these coefficients originate in the strong enhancement of the QCD
factors n;; for the LR and SLL (SRR) operators and in the chiral enhancement of their
matrix elements seen in eq. (B.§). Consequently even small new physics contributions to
CIFR(py) and CP™ (1) can play an important role in the phenomenology (BT, [

In the case of the B°-B° mixing the chiral enhancement of the hadronic matrix ele-
ments of the LR and SLL operators is absent. Moreover, the QCD factors n;; are smaller
than in the case of the K°-K° mixing. Consequently the coefficients PFR and PS™ are
smaller in this case but can be still important. As lattice results are not yet available for
the hadronic matrix elements of the LR and SLL operators in the B system [3] we will
set in this case Bf () = 1. Taking Mp = 5.28 GeV, uy = 4.2 GeV, my(pp) +my(pp) = 4.2
GeV and as(Mz) = 0.118 one finds

PIR = _165 ~ PMR =251,

f — 4.2 GeV. 3.10
P — 149, PSL— —3.01,} or ¢ (3.10)
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pup = 4.2 GeV pr, = 2 GeV
UNP i 500 GeV | 1 TeV i 500 GeV | 1 TeV
Mlvir 0.838 0.809 0.793 0.787 0.759 0.744

[mals || 0.919 | 0.907 | 0.902 | 0.906 | 0.900 | 0.898
[ma)p || —0.043 | —0.054 | —0.060 | —0.089 | —0.107 | —0.118
arlir | —0.919 | —1.190 | —1.360 | —1.548 | —1.923 | —2.159
a2l p | 2303 | 2701 | 2,951 | 3.227 | 3.785 | 4.136
[milegr | 1.676 | 1.846 | 1.949 | 2.063 | 2272 | 2.398
[mzlspy | 2.049 | 2470 | 2715 | 2.970 | 3.441 | 3.717
[n21)sry, || —0.007 | —0.008 | —0.009 || —0.009 | —0.011 | —0.012
[n22)ey || 0.540 | 0.480 | 0.449 | 0.414 | 0366 | 0.341

Table 2: Numerical values for the n-factors for the B°-B° and K°-K° mixing for
agS)(MZ) = 0.118 and different values of the scale unp at which the New Physics is

integrated out.

Since we took py = 4.2 GeV instead of 4.4 GeV, these numbers differ slightly from those
given in ref. [B7). Finally in order to calculate P# in (B-3) we will use ng = 0.55, 17, = 0.57
and [[3]

Bx =085+0.15,  Bp, =1.30+0.18. (3.11)

4 Ft‘i, F;, and F{, in realistic GMVF Models

4.1 2HDM(II) with large tan j3

To see what values of FiZ, F5 and Ff, can be realized in realistic GMFV models we consider
here two extensions of the SM. The first is the 2HDM(II) which introduces three neutral
physical scalars (h°, H® and A°) and a charged physical scalars H*. At one loop only
the charged scalars are relevant for the box diagrams contributing to K°%-K° and B°-B°

mixing amplitudes. Using the compact notation of ref. [[4] the tree level couplings of

Hf = (H*,G%) (where G¥ is the would-be Goldstone boson) read

Lint = H:ﬂAVA[(afIkPL + aéIkPR)d[ + He. (41)
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where

JATE € s cotB  for k=1 (4.2)
L V2sw Mw 1 for k=2
ATk € my, tanf  for k=1

4.3

R ﬂSWMWX{ —1 for k=2 (43)

(Recall that in our notation ds = b, dy = s, di = d and, analogously, us = ¢, us = ¢,
u; = u.) Contribution of HE to the Wilson coefficients C; of the operators responsible for

the transition dydy — dydy in eq. (B-])) can be easily expressed in terms of the coefficients
af™® and ap’®. Diagrams with one W* and one H* givef}

2

€
G My 8OV (e ) = ———ai al mi Do( M, Migs, me, my)
114
62 2
GEMy 00 (i) = == 3 afai | Da( My, Mg, i, o)

_QDQ(MwaMH:'vth)—I_D?(MWvMH;'aOvO)} (44>

where the four-point functions Dy and D are defined in the Appendix. Diagrams with
two HZE giveffl

1
G M8 OV (i) = g 2o ata i i Dao(Mygs My, e, m)
k,l
2 2 VRR 1 :
G2 M2 OV (pnp) = gz algt [ Da(Mgs, My, i, my)
k,l

_ZDQ(MH+ MH:'vml‘vO) + DQ(MHl‘"v MHI;"aOaO)}

1 2
GFMW5 * OLR (pxp) ZZ@E‘” tLUC wr tIlDZ(MH;raMH;amtamt)
1 2
G%Mavé-(ﬂolsLL (pxp) 5 E “latLIkagkatLHmt DO(MvaMHIj?mtv my)
k,l
1 2
G My OT™ (unp) = 52 F glmtDO(MvaMH}jvmtvmf)
k.l
2
G% M, st C’LR (unp) Zaglagkai‘]kaglmt DO(MHZJr,MH:,mt,mt) (4.5)

§The contribution of G* to CYLL 18 already taken into account in the function Sg(z:). Masses of the
u and ¢ quarks are neglected.
Tn the sum over k and [ in the expression for §(+) OV the contribution of GEGTF is excluded. Tt is

taken into account in the function Sp(z:).
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At one loop there are no contributions to the Wilson coefficients of the tensor operators
SEL and QSRR. In the computations we take uxp = Mg+ and apply the formulae
given in Appendix C of ref. [BF]. As our calculation of the Wilson coefficients at uxp
does not include O(ay) corrections and the relevant matrix elements of LR and SLL
operators in the B-system have been evaluated using the vacuum insertion method, there
are inevitably unphysical scale and renormalization scheme dependences present in our
final results. We expect that these dependences are small at scales O(unp) as the strong
coupling a(unp) is small. They could turn out to be more important at p = u, where a;
is bigger. Consequently the evaluation of the hadronic matrix elements of the LR and SLL
operators relevant for B°- B° mixing in the NDR scheme is very desirable. This would not
only remove the unphysical dependences in question but would also give the actual values
of the relevant matrix elements in QCD. Still we believe that our calculation captures the
correct size of the dominant new physics effects.
For large tan 8 and Mpy+ ~ m, the leading terms of the above contributions to the

Wilson coefficients C; are of the order (e*/(32s3, M3,) = G M3, ):

4 ~ 8 _
SEICVIL « —cot? 8, SWHCOIR o ——mdji?d]tanQB (4.6)
3 3 my
for diagrams with W*H7F, and
1 m? _ 1 m2 m? _
5(+)CVLL ~ t t2 5(+)OVRR ~ = dr''td;y t 4 5(+)OLR ~ 0
1 3MI%VC0 67 1 SMI%Vm? an 67 1
SRCSIL L, SHCSER Lo SR o A (4.7)
3 ME

for diagrams with H* H¥. It is clear that for large tan 3 the biggest contribution appears
in §HCIR Tt is of the opposite sign than the contribution of the {W# box diagram and

can be significant only for the B%-BY transition amplitude for which it is of the order

2\ 2
SR ~ —Qms(ﬁj‘\ygb(”t) tan? B ~ —0.14 x (ta;)ﬁ) (4.8)
where we have used my(p:) ~ 3 GeV and ms(u:) ~ 61 MeV. Compared to the esti-
mate of eq. (f£§), similar contributions to 6V CLR for BS-BS and K°-K° transitions are
suppressed by factors mg/ms and mg/my, respectively. As discussed in Sec. 3 all these
contributions are further enhanced compared to the standard ones by the QCD renormal-
ization effects and, in the case of the K°-K° transition, also by the chiral enhancement
of the corresponding matrix element. As a result, in the case of B%-B? mixing the con-
tribution of the Q5% operator can compete with the contribution of the standard Q™"

one for light charged Higgs boson and large values of tan 3. To demonstrate it we plot in
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fig. @ the value of 1+ f, in 2HDM(II) for different values of its parameters. Fig. Ja shows
that a significant decrease of 1 + f; below unity is possible only for Mg+ ~ 100 — 200
GeV and tan 3 close to its upper limit following from the requirement of perturbativity
of the bottom quark Yukawa coupling. The corresponding effects in 1+ f; and 1+ f. are
negligible. The increase of 1+ f, above unity seen in fig. fla for tan 8 < 10 reflects a well
known universal contribution of the box diagrams to the Wilson coefficient of the QY

operator which gives 1 + fix 1+ fy~= 1+ f. > 1.
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Figure 9: 1+ f, in the 2HDM(II): a) as a function of tan 3 for Mg+ = (from below) 150,
250, 300 and 350 GeV and b) as a function of Mg+ for tan 3 = (from above) 40, 60, 80
and 100.

Unfortunately, recent refinements in the computation of the b — sy rate [[] together
with the new CLEO experimental result for this process [ff] BR(B — X,v) = (3.03 £+
0.40 + 0.26) x 10~* set the bound Mg+ 2 380 GeV [{7, f3]. This means that in the
2HDM(I1) for the still allowed range of charged Higgs boson masses the decrease of 1+ f
can be very small. Consequently, the SM analysis of the unitarity triangle based on &,
AM, and AM, is practically unchanged in the 2HDM(II) for large tan 3 < 50.

However, the bound on M+ from the b — sv rate does not apply in the MSSM which

we consider in the next subsection.
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4.2 MSSM with large tan 3

As a second realistic GMFV model we consider the MSSM. At the one loop level the
contributions to the Wilson coefficients of the |AF| = 2 operators (.3) in the MSSM
are given[| by chargino-top squark box diagrams and by box diagrams with the charged
Higgs boson. Since the Higgs sector of the MSSM is (at the tree level) a special case of
the general 2HDM(II) considered in subsection 4.1, the latter contribution is described
by the formulae ([.4), (F5). It is well known [24, B3, [§] that for tan 3 not too big, the
MSSM is of the MFV type and both, the chargino-stop and the Higgs sectors give positive
contributions to 1 + f; =~ 1 + f; & 1 + f. which are the bigger the lighter are particles
in the loops and the smaller is the value of tan 3. In this section we want to consider
the MSSM with large values of tan 3 which are favoured both by the LEP limit on the
mass of the lighter neutral Higgs boson and by the recent measurement of the anomalous
magnetic moment of the muon [I9]. As the treatment of the full MSSM contribution is
complicated, we will for simplicity consider here only the limit of heavy sparticles and will
concentrate only on the most spectacular effects. Complete analysis of the MSSM will be
presented elsewhere [Bf].

In the limit of heavy sparticles (which is practically realized already for Mparticles 2 500
GeV) the one loop diagrams involving charginos and stops are negligible. It is however
known that for large tan 3 even if sparticles are heavy they can still compensate the H*
contribution to the b — sy amplitude allowing for the existence of a light, ~ O(150 GeV),
charged Higgs boson [B0, F1]]. From fig. {] it follows therefore that, even for[q tan 3 < 50
and already at the one loop level the contribution of the MSSM Higgs sector to the CLF
Wilson coefficient can be non-negligible.

At the two loop level one has to take into account not only the O(a;) corrections
to the Wilson coefficients (which in the MSSM arise from exchanges of gluons as well as
gluinos) but also the dominant two loop electroweak corrections (proportional to large top
and, in the case of large tan 3, bottom Yukawa couplings). The gluonic O(a;) corrections
to the charged Higgs box diagrams are expected to be of the same order of magnitude
as the gluonic correction to the SM ¢ — W# box diagrams, i.e. moderate [Z§]. Also most
of the two loop diagrams involving sparticles will give contributions suppressed by the
inverse of the large sparticle masses. The one loop effects of the MSSM Higgs sector are
however enhanced by an important class of two loop corrections involving sparticles. In

the limit of heavy sparticles these corrections can be most easily identified in the effective

IITn accordance with the general framework of this paper we assume here that the CKM matrix is the

only source of flavour and CP violation.
**In the MSSM one usually constrains tan 3 to be less than 50 — 55 by requiring perturbativity of the

Yukawa couplings up to the GUT scale ~ 106 GeV.
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Lagrangian approach [p. While direct contribution of heavy sparticles to the Wilson
coefficients can be neglected, it is well known that for large tan 3 such sparticles do not
decouple entirely [BJ]. Integrating them out modifies the original couplings of the two

Higgs doublets to the known fermions leading to the following quark Yukawa interactions:

Lyuk = —éin'(d)dﬁydlAQAj - H.(“)*dj(Aqu)IAin

k3 k3

— eini(u)ucAYuAIqu — Hl(d)*ujl(Adi/u)AIQIi + H.c. (49)

where HZ»(d) and HZ»(U) are the two Higgs doublets giving at the tree level masses to the
down- and up-type quarks, respectively and ¢;, d° and u° are the fields of the left handed
fermions (for simplicity we use here the Weyl spinors). Dominant corrections (A, Yy)™4
and (A;Y,)?! are finite and calculable in terms of the sparticle parameters. In the effective
Lagrangian approach they can be obtained from diagrams shown in fig. [0 in which @,
U¢ and D¢ are the scalar superpartners of the SM fermions ¢;, d° and u°, g is the gluino

and [:[Z»(d) and [:]Z»(u) are the fermionic superpartners of the two Higgs doublets.

H (w) i H (w) i
A A
// \\ }/ \\
/@B Dir SUs Qo
a4 7 ds 94 ) () ds

q 2
H(d) A H(d) A
A A
// \\ }/ \\
// QJ UE \\ ,/DCB QJ\
a g g a g gw o ug
c) d)

Figure 10: Diagrams giving rise to dominant, tan 3 enhanced, corrections A, Y; (diagrams

a and b) and A;Y, (diagrams c and d).
The effects of the corrections AY are threefold. Firstly, they modify the 2HDM(II)
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relations between the masses mg, (1) and the eigenvalues of the Yukawa matrices Y;4:

— /1 + tan? 3
v/ = =041 fotan? o ——— an’§ (4.10)

B V2sw Mw V2sw Mw 1+ e4(1) tan 3

where ¢4(1) can be found in ref. [f0]. Secondly, they induce additional, o< tan 3, terms
in the couplings ({.2), (-3) [B2, B0]. Both these corrections should be taken into account

in vertices of the charged Higgs boson box diagrams and constitute, therefore, the two

loop corrections to the Wilson coefficients of the |[AF| = 2 operators. It turns out,
however, that the most important (for non-negligible mixing of the top squarks) effect of
the corrections AY is the generation of the flavour non-diagonal, tan 3 enhanced couplings
of the neutral Higgs bosons to down-type quarks [F4, F3]. In the effective Lagrangian
approach these couplings originate from the diagram [(b. Details of their calculation have
been presented in ref. [Bf]. They can be also computed diagramatically as in [pf], b7q] what
allows to take fully into account the complicated composition of charginos. Additional
contributions to the Wilson coefficients CPLL) CFRR and CIR are then generated by the
double penguin diagrams shown in fig. [L1] in which the neutral Higgs bosons are exchanged
at the tree level between two effective flavour changing vertices generated at one loop.

The single neutral Higgs penguin diagram for the (dj)r,r) — (ds)r(,) transition (where
L and R refer to the quark chiralities) grows as tan® 3 and is proportional to my, (mg,)
FA]. Consequently the double penguin diagrams in fig. [ grow like tan® 3 times m?lj,
mﬁl and mg,mg,, respectively. This mismatch of powers in tan 3 and powers of light
quark masses in Higgs penguin diagrams should be contrasted with box diagrams, where
each tan 3 is accompanied by a light quark mass as seen in (f£f)-(f§). In this manner
the two-loop electroweak double Higgs penguins can potentially compete with the one
loop electroweak box diagrams. In the standard diagramatic approach to the calculation
of the flavour changing d;dyH°(h°, A°) vertex the mismatch of powers in question can
be understood simplest as follows. The diagrams for the genuine 1-PI vertex corrections
(with physical squarks and charginos in the loops) contribute only terms proportional to
one power of tan 3. They are however accompanied by two tree level flavour conserving
dydj-Higgs and d;d;-Higgs vertices with flavour violating self-energies (involving squarks
and charginos) on the external quarks lines. As the external momenta can be neglected,
the internal fermion propagators of d; and d; cancel respectively the my, and my, factors
present in the quark-quark-Higgs vertices.

For the transitions d;d; — dyd; the dominant terms obtained from the double penguin

contributions are

SOESLL _ _ apm my m?2 X2 tan'§ F
1 47('5%/‘/ MIA}V dy<*tC -
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(0)~SRR QEM Mi 4 47
OO = ———- my Xictan™ 8 F_ (4.11)

4 st My,
4
JOCLR —  OEM T X2 tan' B F, |
2 27TS%V M{/;dejmdj 1 tan 6 +
Xic 1s given by
2 ai i At /o, t)C
Xio = ZZ+‘7Z_‘7m—H2(:C1 ag ), (4.12)
7=1 OJ

where :I:E/CJ = Mf/ma, 1 =1,2, 7 = 1,2 are the ratios of the stop and chargino masses
squared, the matrices Z; and Z_ are defined in ref. [[4] and the function Hy(z,y) is
defined in the Appendix. The factor

cos’a  sin’a _ sin® ﬁ]

ﬂEleﬁ g T

(4.13)

depends on the masses of the CP-even neutral Higgs bosons A and H°, the mass of the
CP-odd Higgs boson A° (in the MSSM M7, = M3 + Mj,) and the mixing angles & and
B. For tan 3> 1 and M4 2 130 GeV, cos’a ~ 1, sina ~ 0 and My ~ M.

(dr)s  (di): (dr)s  (dr) (dr)s  (dr)

e el e

I I
KO, I, A° KO, HO, A° iho HO, A

Y Y

Figure 11: Double penguin diagram contributing to: a) C?M b) CSRR and ¢) CIR Wilson
coefficients in the MSSM with large tan 3.

As has been observed in [f], §QCF and §©CPRR depend on F_ which for tan 3 > 1
is close to zero and strongly suppresses these corrections. However the correction §(CIR
is proportional to F; which is not suppressed in this limit. Approximating for simplicity
the dimensionless factor X,c by unity, it is easy to see that in the case of the B% BY mixing
this correction, although proportional to small strange quark mass (ms(u:) ~ 61 MeV),
can be for tan 3 ~ 50 and Mg+ ~ 200 GeV as large as 6 CI? ~ 2.51.e. of the same order
of magnitude as the SM contribution to CY*. Consequently there can be a significant,

growing as tan? 3, contribution to the C}'® Wilson coefficient which is further enhanced
(relative to the O coefficient) by QCD effects (see sec. 3).
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Figure 12: 1 + f5 in the MSSM as a function of the mixing angle of the top squarks for
different lighter chargino masses and compositions (r = My/u). Solid, dashed, dotted
and dot-dashed lines correspond to stop masses (in GeV) (500,650), (500,850), (700,850)
and (700,1000), respectively.

An important feature of the double penguin contribution is its fixed negative sign
(because it is proportional X7%,) i.e. the same as the sign of the dominant effects of the
charged Higgs box diagrams at large tan 3. Therefore the double penguin contribution
interferes destructively with the SM contribution and leads to 1 + fs < 1. Another
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Figure 13: 1 4+ f; in the MSSM for lighter chargino mass 750 GeV, r = My/u = —0.5
and stop masses (in GeV) (500,850), (700,1000), (500,850) and (600,1100) (solid, dashed,
dotted and dot-dashed lines, respectively) as a function of a) tan 3 and b) My+. In panel
a) solid and dashed (dotted and dot-dashed) lines correspond to Mg+ = 200 (600) GeV,
and in panel a) solid and dashed (dotted and dot-dashed) lines correspond to tan 3 = 50
(35).

interesting feature is its strong dependence on the left-right mixing of the top squarks
which is clearly visible in fig. [] where we show 1+ f; as a function of the stop mixing
angle 6, for different chargino masses and compositions and different choices of the stop
masses. For the same value of the mixing angle 6;, larger effects are obtained for bigger
stop mass splitting because in this case the parameter | A;| has to be larger. It should be
also stressed that this contribution does not vanish when the mass scale of the sparticles
is increased (i.e. when all mass parameters are scaled uniformly). Thus, large effects
decreasing 1 + f; below unity can be present in the MSSM also for the heavy sparticles
provided the mass scale of the MSSM Higgs sector remains low and tan 3 is large. This
is illustrated in figs. [Ja and b where we show 1 + f, as a function of tan 3 (panel a)
and Mg+ (panel b). Positive contribution to 1 + f, seen in fig. [Ja for tan 8 < 2.5 and
Mpy+ = 200 GeV is due to the ordinary charged Higgs box diagrams which contribute to
the universal part of f,, f; and f. through the Wilson coefficient of the standard Q™"
operator. For lighter H* and light charginos 1 + f, can reach values ~ 2 [25]. As follows

31



from (R.1§) such high values of 1 + f; could be soon excluded by the measurement of
AM,.

The implications of these results are as follows. A large portion of the MSSM param-
eter space considered here leads to 1 + fs values violating already at present the bound
(B139) and is, hence, excluded. It is particularly interesting that part of this parameter
space is not yet excluded by the recent results for the b — sv rate. This is because the
theoretical prediction for the latter depends, besides stop and chargino sector parameters
(on which the double penguin contribution does depend), also on masses of sfermions from
the first two generations, the gluino mass etc. This can have important consequences for
other processes involving the B® mesons. For instance, orders of magnitude enhancement
of the B); — p*p~ branching ratio found in the MSSM for very large mixing of stops
B3, b6, b1, is ruled out, at least for sparticles so heavy that their direct contribution
to the B%-BY mixing cannot significantly reduce the negative double penguin contribution
to 1 + fs. Thus, finding BR(Bgd — ptp7) close to the present experimental bound and
no light stops and charginos would strongly indicate a non-minimal flavour violation in
supersymmetry [pg].

Furthermore, for the MSSM parameters, for which the bound (B.I§) is respected,
14+ fi~ 1+ f. & 1 and in this sector the MSSM in the limit My $ Mg+ < Mgparticle
mimics the SM. In particular, it is still consistent with the present experimental data for ¢,
AMy, AM; and ayx,. Measuring AM; larger than the present lower bound AM; > 15/ps
will further limit allowed combinations of stop mixings, their mass splittings and chargino
parameters. Only very large values of AM;, requiring 1 + f; 2 1, would rule out the
supersymmetric scenario considered here entirely; the SM would be then ruled out too.

Obviously, finding the asymmetry a,x, below its SM value would also rule out this
scenario entirely because for 1 + f; &~ 1 + f. =~ 1 the unitarity of the CKM matrix
requires sin 203 2 0.5, i.e. bigger than the bound ([[.f) valid in MVF models which admit
1+ fam 14+ f. # 1. If ayk, is found around 0.6 then the combination of constraints
from Rj, € and sin 283 similar to the ones shown in fig. §j can put slightly stronger limits
on 1+ fs & Ry than the bound (B.1§) alone but the usefulness of this limits will depend
crucially on the measured value of AM,.

Finally, if experimentally ayx, ~ 0.7 and AM, combined with improved lattice results
for \/F&FBS and ¢ allow for Rsg ~ 1 4 f5 ~ 0.65 — 0.8, this scenario can lead to angle v
moderately smaller than the one predicted in the SM.
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5 Conclusions

In this paper we have investigated the role of new dimension six four-fermion |AF| = 2
operators in models with minimal flavour violation. Short distance contributions to the
mass differences AM;, AM,; and to the CP violation parameter ¢ are parameterized by
three real functions Fj, Fi¥ and FS, respectively. General formulae for F}, in terms of
the Wilson coefficients evaluated at the scale y = pnp, the relevant QCD renormalization
group factors and the non-perturbative B;-factors have been presented.

We have proposed a few simple strategies involving the ratio AM,/AM,, sin 23 and
the angle v that allow to search for the effects of the new operators. We have also
found model independent bounds on the functions 1 + f; = F},/So(x;) that should be
considerably improved once AM;/AM,, sin2/ and the angle v are precisely measured
and our knowledge about non-perturbative parameters and the CKM elements |V,;| and

|V.p| is improved. Our findings can be summarized as follows:

e The present experimental and theoretical uncertainties allow for sizable contribu-

tions of new operators to AM; 4 and .

e As the unitarity of the CKM matrix implies |Vi5| & |Vi| independently of new
physics contributions, the function 1 + f; can be determined from the experimental
value of AM; subject to the uncertainties in |V,|, m; and in particular BBSFBS.
For instance for AM, = 18/ps we find 0.63 < 1+ f; < 1.55. The decrease of the
theoretical error in \/FBSFBS accompanied by a precise measurement of AM, should
tell us whether 1 + f; > 1 or 1 4+ fs < 1 thereby excluding certain scenarios and

putting important constraints on the parameter space of the surviving models.

e We find that values of Ry = (1 + f5)/(1 + fa) substantially different from unity
would allow sin23 to be lower than in the MFV models and in particular in the

SM. Simultaneously R4 = (1 + f4)/(1 4+ f-) < 1 would be favoured.

e Whether R,y > 1 or Ry < 1 is favoured by the data can be decided by the mea-
surement of the angle v with v > 90° and v < 90° corresponding for AM, = 15/ps
to Rsg > 1.2 and Rsy < 1.2, respectively. For a given R,y and sin 273, the predicted
angle v decreases with increasing AM;,. For Ry > 1.5 and AM;/AM,; < 40 values
of the angle v greater than 90° are possible.

e We have determined the presently allowed ranges in the (14 f4, 1+ f.) and (Rsq, 1 +
f:) planes. An analysis of a hypothetical measurements of AM; and ayk, that allow

the determination of the unitarity triangle illustrated various possibilities further.
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As an example we have analyzed the role of new operators in the MSSM with large
tan f = vy/v; in the limit of heavy sparticles, investigating in particular the impact of

the extended Higgs sector on the unitarity triangle. Here our findings are as follows:

e The largest effects of new contributions for large tan 3 are seen in AM,. The
corresponding contributions to AM, and ¢ are strongly suppressed either by inverse

powers of tan 8 or by the smallness of d-quark mass.

e The dominant contributions to AM, for large tan 3 come from the operator QLF =
(b(1 — 75)s)(b(1 + 75)s). They originate from double penguin diagrams involving
neutral Higgs particles and, to a lesser extent, in the box diagrams with charged
Higgs exchanges. The dominant double penguin diagrams arise through the gener-
ation of flavour non-diagonal tan 3 enhanced couplings of neutral Higgs bosons to
the down-type quarks and depend strongly on the mixing of the top squarks and

their mass splitting.

e The contribution of double penguins grows like tan* 3 and interferes destructively

with the SM contribution, suppressing considerably 1 + f; below unity.

e All these findings have the following phenomenological consequences. The MSSM
with large tan (3, substantial stop mixing and large stop mass splitting realizes the
Rsy < 1 scenario with v < 90° and generally smaller than in the SM and MFV
models. As Rj. = 1 and 1 + f. = 1, the lower bound sin28 > 0.50 valid in the
SM remains unchanged. Consequently if ayx is found below 0.50, this scenario of
the MSSM will be excluded (together with the SM) while other MSSM scenarios
with lighter sparticles and lower tan 3, belonging to the MFV class, may still be
consistent with the data. As seen in fig. fll, for higher values of ayx, the MSSM
scenario considered here is a vital possibility with the angle v smaller than in the

SM; although values of R,y as low as 0.6 appear rather improbable.

e The constraint (2.1§), which basically limits the magnitude of the stop mixing pa-
rameter A;, has also important consequences for other processes involving the B°
mesons. For example, in the scenario considered in this paper, it severely limits

possible enhancement of the Bgd — putp™ decay rate.

Detailed analysis of AM;, and ¢ in the MSSM at large tan 3, including also scenarios
with light sparticles will be presented soon [B].

It will be exciting to watch future developments in the experimental values of AMj,
ayi. and the angle v that will either choose one of the possibilities considered in this

paper or constrain the parameters of GMFV models.
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Appendix A

The four point loop functions with zero external momenta are defined as follows:

PO b b
Pulasbed) = [ i = 6t a0 0
c c d d
T e he—d e T U=, AV
&k ik b b
Prlaboed) = | o i ~ G- oG- ot —4)
c? c d? d
T e —be—d e T A== %, A

where [a] = k* — a etc. Finally,

xlnx ylny

By =g et i oow—0

(A.3)
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