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Abstract

Considering the MSSM with the CKM matrix as the only source of flavour vi-

olation and heavy supersymmetric particles at large tanβ, we analyze the corre-

lation between the increase of the rates of the decays B0
s,d → µ+µ− and the sup-

pression of ∆Ms, that are caused by the enhanced flavour changing neutral Higgs

couplings to down-type quarks. We give analytic formulae for the neutral and

charged Higgs couplings to quarks including large tanβ resummed corrections in the

SU(2)×U(1) limit and comment briefly on the accuracy of this approximation. For

0.8 ≤ (∆Ms)
exp/(∆Ms)

SM ≤ 0.95 we find 6 · 10−7 ≥ BR(B0
s → µ+µ−)max ≥ 4 · 10−8

and 1.4 ·10−8 ≥ BR(B0
d → µ+µ−)max ≥ 1 ·10−9. For (∆Ms)

exp ≥ (∆Ms)
SM substan-

tial enhancements of B0
s,d → µ+µ− relative to the expectations based on the Standard

Model are excluded. With (∆Ms)
exp > 15.0/ps a conservative analysis of (∆Ms)

SM

gives BR(B0
s → µ+µ−) <

∼ 1.2 · 10−6 and BR(B0
d → µ+µ−) <

∼ 3 · 10−8. However, we

point out that in the less likely scenario in which the squark mixing is so large that

the neutral Higgs contributions dominate ∆Ms, the rates for B0
s,d → µ+µ− increase

with increasing ∆Ms and the bounds in question are weaker. Violation of all these

correlations and bounds would indicate new sources of flavour violation.



1 Introduction

The Minimal Supersymmetric Standard Model (MSSM), with large value of tan β, the

ratio of the two vacuum expectation values vu/vd, is a very interesting scenario. On the

one hand, it is consistent with the unification of the top and bottom Yukawa couplings

predicted by some SO(10) GUT models. On the other hand, its predictions for rates of

certain low energy processes can differ significantly from the ones of the Standard Model

(SM) even for heavy sparticles and with the Cabibbo-Kobayashi-Maskawa (CKM) matrix

being the only source of flavour and CP violation in the quark sector.

In the down-quark sector large supersymmetric effects originate from tan β enhanced

flavour changing neutral currents (FCNC) mediated by Higgs scalars and generated at one

loop by Higgs penguin-like diagrams with charginos and top-squarks. They have been first

considered in [5] and subsequently found to increase by orders of magnitude the branching

ratios of the rare decays B0
s,d → µ+µ− [1, 2, 3, 4] and to decrease significantly the B0

s -

B̄0
s mass difference ∆Ms [6] relative to the expectations based on the SM. Since both

these effects are caused by the same neutral Higgs boson mediated FCNC (see figs. 2

and 3), a correlation between them must exist [6]. This is particularly interesting as ∆Ms

and BR(B0
s,d → µ+µ−) can in principle be measured at the Tevatron and B–factories in

the coming years. It is the purpose of this letter to point out the consequences of this

correlation.

Analyzing low energy processes in the MSSM with tanβ � 1 it is essential to take into

account all potentially large effects in a consistent framework. Four such effects have been

identified in the literature:

1) Modification of the tree-level relation between the MSSM Lagrangian mass parame-

ters md, ms, mb determining the corresponding Yukawa couplings and the running (“mea-

sured”) quark masses md, ms, mb [7].

2) Corrections to the CKM matrix, as a result of which elements of the physical CKM

matrix, to be called V eff
JI , differ from VJI present in the original Lagrangian [8].

3) Enhanced flavour changing neutral Higgs boson penguins mentioned above.

4) Enhanced corrections to charged Higgs boson vertices [9].

Several steps towards including consistently all these effects in phenomenological anal-

yses have been already made during the last years. In refs. [9, 10, 11] the effects 1) and 4)

have been discussed in the context of the B̄ → Xsγ decay. In [12] the effects 1)-3) have

been calculated in the SU(2)×U(1) symmetry limit in the context of B0
s,d → µ+µ− decays

and B0
s,d-B̄0

s,d mixings confirming the increase of BR(B0
s,d → µ+µ−) and the suppression of

∆Ms pointed out in [1, 2, 3, 4] and [6], respectively.

In the following detailed analysis [13] we extend these analyses based on SU(2) ×U(1)

symmetry limit [1, 12] by calculating all the four effects in a more general effective La-
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grangian approach, comparing the results, analytically and numerically, with the SU(2) ×
U(1) symmetry limit and thereby confirming and in certain cases correcting and general-

izing analytical rules for inclusion of the large tanβ effects presented in [9, 10, 11, 12]. As

the analysis of [13] is long and technical, in the present letter we summarize compactly the

results for all the four listed effects. We present numerical results based on the formalism

of [13] and explain them qualitatively using the formulae obtained in the SU(2)×U(1) sym-

metry limit. This allows us to analyze in detail the correlation between BR(B0
s,d → µ+µ−)

and ∆Ms pointed out in [6] taking into account the B̄ → Xsγ constraint.

During the completion of this letter a model independent analysis of rare processes in

theories with the CKM matrix as the unique source of flavour and CP violation has been

presented in [14]. While those authors also investigated large tan β effects in BR(B0
s,d →

µ+µ−), ∆Ms and B̄ → Xsγ, they have not analyzed the correlation between BR(B0
s,d →

µ+µ−) and ∆Ms addressed here.

As the recent discussions in the literature [3, 14] show that the statements like “models

in which flavour mixing is ruled only by the CKM matrix” or “models with minimal flavour

violation” have different meaning in different papers, we would like to specify the structure

of flavour violation in the MSSM version considered by us. While the flavour violation in

the scenario considered is ruled by the CKM matrix, it should be emphasized that for split

soft SUSY breaking masses of left-handed squarks belonging to different generations some

flavour violation unavoidably appears in the up- or down-type (or in both) squark mass

squared matrices. In our calculations we choose the soft SUSY breaking mass parameter

m2
Q such that flavour violation appears in the up-type squark mass matrix. The scenario

with flavour violation in the down-type squark mass matrix would require the inclusion of

box and Higgs penguin diagrams with gluinos and is beyond the scope of this paper.

2 The effective Lagrangian

Let us consider the decoupling of sparticles in the limit of unbroken SU(2)×U(1) symme-

try [1, 12]. The electroweak symmetry breaking is then taken into account after sparticles

are integrated out. This approximation should be valid if the sparticle mass scale is larger

than that of the Higgs boson sector (set by MH+). The absence of vacuum expectation val-

ues before decoupling implies neglecting the left-right mixing in the squark mass matrices

even for non-vanishing Au,d and/or µ parameters.

In this approach below the sparticle mass scale the effective Lagrangians describing

the neutral and charged Higgs boson couplings to the down- and up-type quarks have the

form [15, 1]

L(d)
eff = −εijH

(d)
i dR · (Yd + ∆dYd) · qjL −H

(u)∗
i dR · ∆uYd · qiL + H.c. (2.1)
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L(u)
eff = −εijH

(u)
i uR · (Yu + ∆uYu) · qjL − H

(d)∗
i uR · ∆dYu · qiL + H.c. (2.2)

where ε21 = −ε12 = 1 and Yd,u are Yukawa coupling matrices. The neutral and charged

components of the two Higgs doublets are given in the standard way

H
(d)
1 =

vd√
2

+
1√
2

(

H0 cos α − h0 sin α + iA0 sin β − iG0 cos β
)

H
(u)∗
2 =

vu√
2

+
1√
2

(

H0 sin α + h0 cos α − iA0 cos β − iG0 sin β
)

(2.3)

H
(d)∗
2 = H+ sin β −G+ cos β, H

(u)
1 = H+ cos β + G+ sin β . (2.4)

In these conventions

mdJ
= − vd√

2
ydJ

, muJ
=

vu√
2
yuJ

(2.5)

where ydJ
and yuJ

are the Yukawa couplings. Here J is the flavour index with d1 ≡ d,

d2 ≡ s, d3 ≡ b and similarly for the up-type quarks. Finally v2
d/ cos2 β = v2

u/ sin2 β =

1/
√

2GF ≈ (246 GeV)2.

The loop induced terms ∆dYd and ∆uYu are always subleading in the large tan β limit

and can be neglected. Diagrams giving rise to the correction ∆uYd are shown in figs. 1a

and 1b. In the basis in which Yd = diag(yd), Yu = diag(yu) · V where V is the CKM

matrix, and neglecting y2
u and y2

c , the correction ∆uYd has the structure [12]

(∆uYd)
JI

= −ydJ

(

ε0δ
JI + εY y2

t V
3J∗V 3I

)

. (2.6)

The correction ∆dYu is generated by the diagrams shown in figs. 1c and 1d and has the

form

(∆dYu)
JI

= yuJ
VJI

(

ε′0 + ε′Y y2
dI

)

. (2.7)

The four quantities ε0, εY , ε′0, ε′Y can be obtained by calculating the diagrams in fig. 1:

ε0 = −2αs

3π

µ

mg̃
H2

(

xQ/g, xD/g
)

, εY =
1

16π2

At

µ
H2

(

xQ/µ, xU/µ
)

(2.8)

ε′0 = −2αs

3π

µ

mg̃
H2

(

xQ/g, xU/g
)

, ε′Y =
1

16π2

Ab

µ
H2

(

xQ/µ, xD/µ
)

(2.9)

where xQ/g ≡ m2
Q/m2

g̃, xD/g ≡ m2
D/m2

g̃, xQ/µ ≡ m2
Q/µ2 etc., and m2

Q, m2
D, m2

U , At, and Ab

are the parameters of the soft supersymmetry breaking in the MSSM Lagrangian1. The

function H2(x, y) is defined as

H2(x, y) =
x lnx

(1 − x)(x− y)
+

y ln y

(1 − y)(y − x)
. (2.10)

The eqs. (10),(15),(16) of [9] reduce to (2.8) and (2.9) in the SU(2)×U(1) symmetry limit.
1Our convention [16] for Au and Ad parameters is fixed by the form of the left-right mixing terms in the

squark mass matrices which read −mu(Au +µ cot β) and −md(Ad +µ tan β) for the up and down squarks,

respectively.
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qI dc
J

g̃ g̃

QI Dc
J

H(u)

gs gs

µ ydJ
δJI

a)

qI dc
J

H̃(u) H̃(d)

U c
K QJ

H(u)

yuK
VKI ydJ

AuyuK
V ∗

KJ

b)

qI uc
Jgs gs

g̃ g̃

QI U c
J

µ yuJ
VJI

H(d)

c)

qI uc
J

H̃(d) H̃(u)

Dc
I QK

Ad ydI
δKI

H(d)

ydI yuJ
VJK

d)

Figure 1: Vertex corrections in the SU(2)×U(1) symmetry limit. Diagrams a) and b) give

rise to corrections (∆uYd)JI , diagrams c) and d) to corrections (∆dYu)JI .

3 Effective Parameters and Couplings

The mass matrices of the down- and up-type quarks can be obtained by replacing the

neutral scalar fields in (2.1) and (2.2) by their vacuum expectation values. One finds

that the down-type-quark mass matrix M̂d receives tanβ enhanced corrections both to

the diagonal and non-diagonal entries, whereas the corresponding corrections to M̂u are

negligible. M̂d is then diagonalized by the appropriate rotations of the dL and dR fields.

Except for the charged Higgs boson H+ couplings in which loop correction ∆dYu matters,

the four effects listed in the Introduction result from performing these rotations on the dL

and dR fields in the interaction vertices in (2.1) and (2.2).

In the full approach that goes beyond the SU(2) × U(1) symmetry limit [13], the

corrections to M̂d are found by calculating directly the self-energy diagrams of the down-

type-quarks. The resulting formulae are rather complicated and are presented in [13] where

also the derivation of the formulae in the SU(2) × U(1) limit is described in detail.

Below we give the formulae that summarize the effects 1)–4) in the SU(2) × U(1)

symmetry limit. The quark fields in these formulae are mass eigenstates of the one-loop
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corrected matrices M̂d and M̂u as opposed to the original fields in (2.1) and (2.2).

1. The original mass parameters mdJ
and muJ

in (2.5), that enter the Feynman rules,

are related to the effective running mass parameters mdJ
and muJ

of the low energy theory

through [7]

mdJ
=

mdJ

1 + ε̃J tan β
, muJ

≈ muJ
(3.1)

with ε̃J given by

ε̃J ≡ ε0 + εY y2
t V

∗

3JV3J ≈ ε0 + εY y2
t δ

J3 . (3.2)

It has been shown [10] that expressing mdJ
through mdJ

by means of (3.1) in the neutral

and charged Higgs couplings resums for large values of tan β dominant supersymmetric

corrections to all orders of perturbation theory. Such a resummation is necessary for

obtaining reliable results. Note that in contrast to the corrections to mb in (3.1), the ones

to md and ms do not depend on the top Yukawa coupling.

2. The original elements of the CKM matrix, VJI , present in the Feynman rules of the

MSSM are related to the effective CKM matrix V eff
JI through [8, 1, 12, 13]

VJI = V eff
JI

[

1 + ε̃3 tan β

1 + ε0 tan β

]

for (JI) = (13), (23), (31) and (32),

VJI = V eff
JI otherwise. (3.3)

It is V eff
JI that has to be identified with the CKM matrix whose elements are determined

from the low energy processes. Note that the elements |Vub| and |Vcb|, that are affected

by these corrections are usually determined from tree level decays under the assumption

that new physics contributions to the relevant branching ratios can be neglected. This

assumption is violated in the case of supersymmetry at large tan β. In other words, what

experimentalists extract from tree level decays are |V eff
ub | and |V eff

cb | and not |Vub| and |Vcb|.
3. The effective Lagrangian describing flavour violating neutral Higgs interactions with

down-type quarks is given by

Loff−diag
eff = −(dJ )R

[

XS
RL

]JI
(dI)LS0 − (dJ )L

[

XS
LR

]JI
(dI)RS0 (3.4)

with S0 = (H0, h0, A0, G0). In the case of B-physics the pairs (J, I) = (3, 2), (3, 1), (2, 3)

and (1, 3) matter. We find [13]

[

XS
RL

]JI
=

[

XS
LR

]IJ∗
=

g

2MW cos β

mdJ
V 3J∗

eff V 3I
eff

(1 + ε̃3 tan β)(1 + ε0 tan β)
εY y2

t

(

xS
u − xS

d tan β
)

(3.5)

where xS
d = (cos α,− sin α, i sin β,−i cosβ), and xS

u = (sin α, cos α,−i cos β,−i sinβ).

In the case of K-physics the pairs (J, I) = (2, 1) and (1, 2) matter and we find [13]

[

XS
RL

]JI
=

[

XS
LR

]IJ∗
=

g

2MW cos β
mdJ

V 3J∗
eff V 3I

eff

(1 + ε̃3 tan β)2

(1 + ε0 tan β)4
εY y2

t

(

xS
u − xS

d tan β
)

.

(3.6)
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Note that the flavour violating couplings of G0 vanish in this limit. Formulae (3.5)–(3.6)

agree with the recent corrected version of [12] except that V eff∗
J3 in equation (10) of that

paper should be replaced by V eff∗
3J .

4. The effective couplings of the charged Higgs (H±) and Goldstone (G±) bosons to

quarks are given respectively by

LH+

eff = (uJ)R

[

P H
RL

]JI
(dI)LH+ + (uJ)L

[

P H
LR

]JI
(dI)RH+ + h.c (3.7)

LG+

eff = (uJ)R

[

P G
RL

]JI
(dI)LG+ + (uJ)L

[

P G
LR

]JI
(dI)RG+ + h.c . (3.8)

It is useful to define the parameters εHL
JI , εHR

JI , εGL
JI and εGR

JI through

[

P H
RL

]JI
=

g√
2MW

cot βmuJ
V eff

JI (1 − εHL
JI ),

[

P H
LR

]JI
=

g√
2MW

tan βV eff
JI mdI

(1 − εHR
JI ),

(3.9)
[

P G
RL

]JI
=

g√
2MW

muJ
V eff

JI (1 + εGL
JI ),

[

P G
LR

]JI
= − g√

2MW

V eff
JI mdI

(1 + εGR
JI ). (3.10)

Using ε̃J defined in (3.2), we find in the SU(2) × U(1) symmetry limit [13]

εHL
JI = tan β

(

ε′0 + ε′Y y2
bδ

I3
)

+ ∆JI εHR
JI =

ε̃J tan β

1 + ε̃J tan β
, εGL

JI = εGR
JI = 0. (3.11)

where

∆JI = y2
by

2
t

εY ε′Y tan2 β

1 + ε0 tan β
×















+1 (J, I) = (1, 3), (2, 3)

−1 (J, I) = (3, 1), (3, 2)

0 otherwise

(3.12)

In the SU(2)×U(1) symmetry limit vanishing of the corrections εGL
JI and εGR

JI to the charged

Goldstone boson vertices expressed in terms of V eff and physical masses mdI
is required by

gauge invariance [13]. The results for εHL
JI and εHR

JI agree with ref. [14], where the presence

of ∆JI has been pointed out.

We observe that the εHR
JI corrections to the vertices involving V eff

ts and V eff
td depend on

the top Yukawa coupling y2
t while those to the vertices involving V eff

cb and V eff
ub do not. Note

also that whereas the rule (3.11) for εHR
JI for (J 6= 3, I) and accidentally for J = I = 3 is

equivalent to expressing in the tree level formulae mdI
and VJI through mdI

and V eff
JI by

means of (3.1) and (3.3) respectively, for J = 3 and I = 1, 2 it is more involved. Expressing

in these cases only VJI and mdI
through V eff

JI and mdI
, would give wrong results. In [9]

explicit expressions for [P
H(G)
RL ]JI with J = 3, I = 1, 2, 3 and for [P

H(G)
LR ]JI with J = 1, 2, 3

and I = 3 have been given omitting the modifications of the CKM factors summarized

in (3.3) - see the formula (17) of that paper. As discussed in [13], the particular couplings

given in [9] agree with the formulae given above provided ∆JI is set to zero and the CKM

matrix V of [9] is identified with V eff in [P
H(G)
RL ]JI of that paper and with the original

MSSM CKM matrix in [P
H(G)
LR ]JI . In spite of this inconsistency, in the special case of the
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dominant operator in the B̄ → Xsγ decay, the recipes for the inclusion of large tanβ effects

into Wilson coefficients formulated in eqs. (18) and (19) of that paper are accidentally

correct provided all the CKM factors involved in this decay are identified with Veff and

∆JI is set to zero. However, as emphasized in [14] ∆JI cannot be generally neglected for

|εY tan β| and |ε′Y tan β| larger than 0.5 and it could be important for ε′0 ≈ −ε′Y when the

O(tan β) term in εHL
JI is small.

As discussed in detail in [13], the approximations described here work rather well for

the relation (3.1) between the original mass parameters mdI
(i.e. the Yukawa couplings)

and the running masses mdI
and also for the relation between V and Veff . The differences

between the full and approximate calculation are usually smaller than 15% and are mainly

due to neglecting in the SU(2) × U(1) symmetry limit some gauge coupling-dependent

terms. The same remains true also for the flavour changing couplings XRL and XLR of the

neutral scalars since their dominant parts originate from the rotations of dL and dR fields

which are directly related to the corrections to the down-type quark mass matrix.

Let us record that typically |ε0| and |ε̃3| are ∼ 5 × 10−3 and can reach ∼ 10−2 for very

large values of |µ| and/or |At|. We have also checked that taking the B̄ → Xsγ constraint

into account, values of the factor (1 + ε̃3 tan β)(1 + ε0 tan β) entering the denominator of

eq. (3.5), vary between 0.2 and 2 for tan β ≈ 50.

In the case of charged Higgs boson couplings the full calculation confirms the smallness

of the corrections εGL(R) (typically |εGL(R)| <
∼ 0.05). The approximate formulae (3.11) for

εHR and especially for εHL are not as accurate as the ones for the couplings XRL and XLR.

This is because triangle vertex diagrams with the chargino-neutralino pairs coupling to H+

also play a role. However, in the case of the B0
s -B̄0

s mixing and of the decays B0
s,d → µ+µ−

these corrections constitute only subdominant contribution to the relevant amplitudes and

the inaccuracy of the approximation is not essential. Therefore, the approximate formulae

we present in the following section give qualitatively correct picture of the dependence of the

dominant corrections to the B0
s -B̄0

s and B0
s,d → µ+µ− amplitudes on the MSSM parameters.

We stress however, that the results presented in fig. 4 are based on the complete calculation

along the lines of [13].

4 ∆Ms and B0
s,d

→ µ+µ−

1. In the supersymmetric scenario considered here, ∆Ms is given by

∆Ms = |(∆Ms)
SM + (∆Ms)

H± + (∆Ms)
χ± + (∆Ms)

DP| ≡ (∆Ms)
SM|(1 + fs)| (4.1)

(∆Ms is by definition a positive definite quantity). Here, (∆Ms)
SM represents the SM

contribution, (∆Ms)
H± results from box-diagrams with top and (H±, H±), (H±, W±) and
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(H±, G±) exchanges and (∆Ms)
χ± is the contribution of box diagrams with chargino and

squarks. Finally, (∆Ms)
DP results from double Higgs penguin diagrams of fig. 2.

Explicit expressions for different contributions in terms of the Wilson coefficients of

contributing operators and hadronic matrix elements can be found in [6, 13, 17]. With

respect to our previous analysis in [6] we have now included all resummed large tanβ

corrections to the relevant couplings as discussed in the previous section.

h0,H0,A0

bR sL

bRsL

h0,H0,A0

bL sR

bLsR

h0,H0,A0

bR sL

bLsR

Figure 2: Double penguin diagrams contributing to ∆Ms.

In the scenario considered in [6] and here supersymmetric particles are heavier than

the Higgs particles and the chargino box contribution (∆Ms)
χ± is small. At large tanβ

the double penguin contribution (∆Ms)
DP is the dominant correction to (∆Ms)

SM but the

charged Higgs box contribution can also be significant [6]. Both contributions have signs

opposite to (∆Ms)
SM. Consequently for large tanβ one finds (1 + fs) < 1 independently

of the other supersymmetric parameters. For not too large values of tan β <
∼ 50 and of the

stop mixing parameter At
<
∼ MSUSY the contributions (∆Ms)

DP and (∆Ms)
H+

are smaller

than (∆Ms)
SM and one gets 0 < (1 + fs) < 1. Of interest is also the case (1 + fs) < 0

corresponding to a very large negative (∆Ms)
DP that can be realized for some special

values of supersymmetric parameters - large tanβ >
∼ 50 and/or At � MSUSY. We will

include this possibility in our analysis as it has quite different implications than the case

0 < (1 + fs) < 1.

The double penguin diagrams of fig. 2 give O(tan4 β) correction to ∆Ms. The leading

contribution comes from the last diagram that contributes to the Wilson coefficient CLR
2

of the operator QLR
2 = (bRsL)(bLsR). Using the vertices of eq. (3.5) we find [13]

(∆Ms)
DP =

G2
F M2

W

24π2
MBsF

2
Bs
|V eff

ts |2P LR
2 CLR

2 (4.2)

where

CLR
2 ≈ −GF mbmd(s)m

4
t√

2π2M2
W

tan4 β ε2
Y (16π2)2

(1 + ε̃3 tan β)2(1 + ε0 tan β)2

[

sin2(α − β)

M2
H0

+
cos2(α − β)

M2
h0

+
1

M2
A0

]

(4.3)

and P LR
2 ≈ 2.5 includes the short distance NLO QCD corrections [17, 18, 19] and the
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relevant hadronic matrix elements [20]. Details are given in [6, 13, 17]. CLR
2 in (4.3) agrees

with the corrected version of [12].

For large tan β one has MH0 ≈ MA0 , cos2(α − β) ≈ 0 and sin2(α − β) ≈ 1 and we find

(∆Ms)
DP = −12.0/ps ×

[

tan β

50

]4 [

P LR
2

2.50

]

[

FBs

230 MeV

]2
[

|Vts|
0.040

]2

×
[

mb(µt)

3.0GeV

] [

ms(µt)

0.06GeV

] [

m4
t (µt)

M2
W M2

A

]

ε2
Y (16π2)2

(1 + ε̃3 tan β)2(1 + ε0 tan β)2
. (4.4)

We recall that for large tan β the H0 and A0 contributions to the first two diagrams in

fig. 2 cancel each other [1, 6] and as the contribution of h0 can be neglected in this limit,

the total contributions of these two diagrams are very small.

2. At large tan β the branching ratios BR(B0
s,d → µ+µ−) are fully dominated by the

diagrams in fig. 3 [1, 2, 3, 4]. Following [21] we find

BR(B0
s → µ+µ−) = 2.32 × 10−6

[

τBs

1.5 ps

]

[

FBs

230 MeV

]2
[

|V eff
ts |

0.040

]2
[

|c̃S|2 + |c̃P |2
]

. (4.5)

Here c̃S and c̃P are the dimensionless Wilson coefficients c̃S = MBscS and c̃P = MBscP

with cS and cP being properly normalized (see [21]) Wilson coefficients of the operators

OS = mb(bRsL)(l̄l), OP = mb(bRsL)(l̄γ5l). (4.6)

h0,H0,A0

bR

sL, dL

l−

l+

tan2 β tanβ

Figure 3: Dominant diagrams contributing to B0
s,d → l+l− decays at large tan β.

Using the vertices in (3.5) one finds from the diagrams of fig. 3 [12, 13]

cS ≈ −mµm
2
t

4M2
W

16π2εY tan3 β

(1 + ε̃3 tan β)(1 + ε0 tan β)

[

−sin(α − β) cos α

M2
H0

+
cos(α − β) sin α

M2
h0

]

. (4.7)

cP ≈ −mµm
2
t

4M2
W

16π2εY tan3 β

(1 + ε̃3 tan β)(1 + ε0 tan β)

[

1

M2
A0

]

. (4.8)
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In the large tan β limit the contribution of h0 to cS can be neglected and setting M 2
H0 ≈

M2
A0 we find from (4.7) and (4.8) that |cS | = |cP | with cP given in (4.8). Consequently

BR(B0
s → µ+µ−) = 3.5 × 10−5

[

tan β

50

]6 [

τBs

1.5 ps

]

[

FBs

230 MeV

]2
[

|V eff
ts |

0.040

]2

× m4
t

M4
A

(16π2)2ε2
Y

(1 + ε̃3 tan β)2(1 + ε0 tan β)2
. (4.9)

This result agrees with [12]. Moreover one has

BR(B0
d → µ+µ−)

BR(B0
s → µ+µ−)

=

[

τBd

τBs

] [

FBd

FBs

]2 [

|V eff
td |

|V eff
ts |

]2 [

MBd

MBs

]5

(4.10)

that is, the ratio of the branching fractions can depend on the SUSY parameters only

weakly through |V eff
td /V eff

ts | which should be consistently determined from the unitarity

triangle analysis [22, 13].

The presence of additional tan β dependence in the denominators of eqs. (4.4) and (4.9),

not included in [6] and [1, 2, 3, 4], has been pointed out in [12]. While we confirm these

additional factors, we would like to emphasize that depending on the sign of the super-

symmetric parameter µ they can suppress ∆MDP
s and BR(B0

s → µ+µ−) relative to the

estimates in the papers in question, as stressed in [12], but can also provide additional

enhancements.

3. Using (4.4) and (4.9) we find the correlation between the neutral Higgs contributions

to BR(B0
s → µ+µ−) and ∆MDP

s that we have pointed out in [6]:

BR(B0
s → µ+µ−) = κ 10−6

[

tan β

50

]2 [

200GeV

MA0

]2
[

|∆MDP
s |

2.12/ps

]

(4.11)

where

κ =

[

2.50

P LR
2

] [

3.0GeV

mb(µt)

] [

0.06GeV

ms(µt)

] [

τBs

1.5 ps

]

≈ 1 . (4.12)

This relation depends sensitively on MA0 and tan β but it does not depend on ε0 and ε̃3.

From (4.10) a similar correlation between BR(B0
d → µ+µ−) and ∆MDP

s follows.

In order to understand these results better, let us now assume that ∆Ms has been

measured and that appropriate supersymmetric parameters can be found for which the

MSSM considered here agrees with (∆Ms)
exp. If 0 < (1 + fs) < 1 this implies (∆Ms)

exp <

(∆Ms)
SM. Then combining (4.1) and (4.11) we find

BR(B0
s → µ+µ−) = 8.5 · 10−6κ

[

tan β

50

]2 [

200GeV

MA0

]2
[

(∆Ms)
SM

18.0/ps

]

×
[

1 ∓ (∆Ms)
exp

(∆Ms)SM
− |(∆Ms)

H±|
(∆Ms)SM

+
(∆Ms)

χ±

(∆Ms)SM

]

. (4.13)
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with “∓” corresponding to 0 < (1 + fs) < 1 and (1 + fs) < 0, respectively. Using (4.10)

analogous expression for BR(B0
d → µ+µ−) can be found. In writing (4.13) we have taken

into account that (∆Ms)
DP is always negative and that for large tan β (∆Ms)

H± is negative

and (∆Ms)
χ± is positive. Formula (4.13) is valid provided the expression in square brackets

is positive and larger than 10−3. Otherwise, other contributions, in particular those coming

from Z0-penguins have to be taken into account. In our numerical analysis we take them

into account anyway.

Formula (4.13) demonstrates very clearly that if (∆Ms)
exp will turn out to be close or

larger than the SM value, the order of magnitude enhancements of BR(B0
s,d → µ+µ−) in

the scenario of the MSSM considered here with 0 < (1 + fs) < 1 will be excluded. On the

other hand large enhancements of BR(B0
s,d → µ+µ−) are in principle still possible if the

double-penguin contribution is so large that (1+fs) < 0 and the ”+” sign in (4.13) applies.

For tan β < 50 obtaining (1 + fs) < 0 and the right magnitude of ∆Ms requires µ < 0

so that the couplings (3.5) are enhanced by the ε-factors in the denominator. µ < 0 is

excluded in particular scenarios like minimal SUGRA, in which the sign of At is fixed and

µ < 0 does not allow for satisfying the B̄ → Xsγ constraint [11], but cannot be excluded

in general.

In order to find (∆Ms)
exp/(∆Ms)

SM one has to deal with the non-perturbative uncer-

tainties contained in the evaluation of (∆Ms)
SM. The allowed range for (∆Ms)

exp/(∆Ms)
SM

can be obtained by varying all relevant SM parameters like mt, Vts and FBs

√
BBs. A con-

servative scanning of these parameters performed in [6] resulted in

a

[

(∆Ms)
exp

15/ps

]

≤ (∆Ms)
exp

(∆Ms)SM
≤ b

[

(∆Ms)
exp

15/ps

]

(4.14)

with a = 0.52 and b = 1.29. It is however clear that the numerical values of the parameters

a and b depend on the error analysis and the difference b−a should also become smaller as

the uncertainties in the parameters mt, Vts and in particular in FBs

√
BBs are reduced with

time. For example, the very recent analysis using the Bayesian approach gives a = 0.71 and

b = 1.0 [23] that correspond to the 95% probability range 15.1/ps ≤ (∆Ms)
SM ≤ 21.0/ps.

We illustrate the correlations in question in fig. 4 where we plot BR(B0
s,d → µ+µ−)

as functions of (∆Ms)
exp/(∆Ms)

SM for tan β = 50 and MA0 = 200 GeV by scanning the

other MSSM parameters with the restriction that sparticles are heavier than 500 GeV and

the B̄ → Xsγ constraint is satisfied. For each point in the MSSM parameter space V eff
td is

determined by the standard unitarity triangle analysis [6, 22, 13, 23]. (∆Md)
exp and the

parameter εK do not constrain the scan as the Higgs and supersymmetric corrections to

these quantities are small in our scenario [6]. In the numerical analysis we have used the

formulae from the full approach [6, 13] including SU(2)×U(1) breaking corrections. Still,

the approximate formula (4.13) describes qualitatively the main features of the correla-
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Figure 4: Correlation between ∆Ms and B0
s,d → µ+µ− in the MSSM with flavour violation

ruled by the CKM matrix. Lower (upper) branches of points correspond to 0 < 1 + fs < 1

(1 + fs < 0). Current experimental bounds: BR(B0
s → µ+µ−) < 2 · 10−6 (CDF) [24] and

BR(B0
d → µ+µ−) < 2.1 · 10−7 (BaBar) [25] are shown by the horizontal solid lines.

tion. For sparticles heavier than 500 GeV the contribution of chargino-stop boxes to the

formula (4.13) is negligible, (∆Ms)
χ±/(∆Ms)

SM <
∼ 0.03. On the other hand, the contribu-

tion of the H± boxes can be substantial, |(∆Ms)
H±|/(∆Ms)

SM can reach 0.65 due to the

corrections εHL(R) described in section 3. This is contrary to the claim made in ref. [12]

that the εHL(R) corrections are not important. We have checked that for charginos and

stops as light as 150 GeV, (∆Ms)
χ±/(∆Ms)

SM <
∼ 0.2 whereas |(∆Ms)

H±|/(∆Ms)
SM can

reach 0.3. Also, as follows from the scan based on the complete calculation, the typical

values of |(∆Ms)
DP| are smaller for lighter sparticles.

For values of MA and tan β shown in fig. 4 all points corresponding to the rather unlikely

scenario with 1 + fs < 0 are eliminated by the combination of the lower limit (4.14) and

the CDF upper bound BR(B0
s → µ+µ−) < 2×10−6 [24] but this is not the case for heavier

A0 and/or smaller tan β values. Therefore for such points we can only use (4.10) to find

BR(B0
d → µ+µ−) < 3.6 (3.1) · 10−8

[

1.15

FBs/FBd

]2 [

BR(B0
s → µ+µ−)exp

10−6

]

(4.15)

with the numerical factor corresponding to the analyses in [6] and [23], respectively. With
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the current CDF bound one has the upper bound BR(B0
d → µ+µ−) < 8 (7) · 10−8 which is

still lower than the current BaBar bound [25].

For a more likely situation of 0 < 1 + fs < 1 and (∆Ms)
exp satisfying (4.14) we get

upper bounds on both branching ratios:

BR(B0
s → µ+µ−) <

∼ 1.2 · 10−6 (8 · 10−7) for a = 0.52 (0.71),

BR(B0
d → µ+µ−) <

∼ 3 · 10−8 (2 · 10−8) for a = 0.52 (0.71). (4.16)

where the two values for the parameter a correspond to the analyses in [6] and [23], re-

spectively. This should be compared with the SM values that are in the ballpark of 3 ·10−9

and 1 · 10−10, respectively. On the basis of our discussion of the contribution (∆Ms)
χ±,

we would like to emphasize that the upper limits on BR(B0
s,d → µ+µ−) obtained here for

heavy sparticle spectrum cannot be significantly altered by lowering the sparticle masses.

5 Summary

In this letter we have analyzed ∆Ms and BR(B0
s,d → µ+µ−) in the MSSM with the CKM

matrix as the only source of flavour and CP violation. By considering heavy sparticle

spectrum we have quantified the tight correlation between these quantities that exists

for large values of tan β. Our analysis shows that the neglect of this correlation in the

analyses of BR(B0
s,d → µ+µ−) at large tan β as done in the previous literature [1, 2, 3, 4,

12, 26] is not justified. The correlation in question leads to interesting upper bounds on

BR(B0
s → µ+µ−) and BR(B0

d → µ+µ−) not considered sofar in the literature. In the most

likely scenario with 0 < (1 + fs) < 1 the upper bounds are becoming very strong when

the ratio (∆Ms)
exp/(∆Ms)

SM approaches unity. For (∆Ms)
exp ≥ (∆Ms)

SM substantial

enhancements of BR(B0
s,d → µ+µ−) with respect to the values obtained in the SM are

not possible within the MSSM scenario considered here. Therefore finding experimentally

BR(B0
d → µ+µ−) above 3 · 10−8, that is one order of magnitude below the current limit,

would be a strong signal of new sources of flavour violation [22].

As the upper bounds on BR(B0
s,d → µ+µ−) discussed here are sensitive functions of

the ratio (∆Ms)
exp/(∆Ms)

SM, their quantitative usefulness will depend on the value of

(∆Ms)
exp and on the accuracy with which (∆Ms)

SM can be calculated. In this respect the

present efforts of experimentalists to measure BR(B0
s,d → µ+µ−) and ∆Ms and of theorists

to calculate FBd,s
and the parameters Bd,s appear even more important than until now.
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