Advanced Quantum Mechanics of Many-Body Systems Homework 6

(6 Jan 2025)

Problem 1

Reconsider the problem analyzed in the lecture, concerning the mean-field treatment of the Hamiltonian $\sum_{i,j,\sigma} T_{ij} a^\dagger_{i\sigma} a_{j\sigma} + \frac{1}{2}$ $\frac{1}{2}U\sum_{i\sigma}n_{i\sigma}n_{i-\sigma}$. Assume however that the spatial dimensionality $d=2$. When convenient, restrict to temperature $T = 0$ and approximate the dispersion by a form quadratic in k. Follow the reasoning from the lecture. Discuss the possibility of obtaining a ferromagnetic ground state. Where do the differences between $d = 2$ and $d = 3$ appear?

Problem 2

For a two-dimensional non-interacting gas of $N \gg 1$ electrons contained in a large square box of area A and at temperature $T > 0$:

(a) Write down the equation of motion for the one-electron retarded Green's function $G_{\vec{k},\sigma}^{ret}(E)$ and solve it. Obtain also $G_{\vec{k},\sigma}^{ret}(t-t')$.

(b) Write down an expression for the electronic spectral density $S_{\vec{k},\sigma}(E)$.

(c) Find an expression for the chemical potential $\mu(T, n)$, where $n = N/A$.

(d) Find an expression for the Fermi energy $\epsilon_F(n)$.

Hints: $\int_{-\infty}^{\infty} dx e^{-xt} \frac{1}{x+i0^+} = -2\pi i \theta(t)$, $-\frac{d}{dx} (\ln(1+ze^{-x})) = \frac{1}{e^x z^{-1}+1}$.

Problem 3

Quantized vibrations of an ionic lattice are described in terms of a non-interacting phonon gas: $H =$ $\sum_{\vec{q},\lambda} \hbar \omega_{\lambda}(\vec{q}) \left(a_{\vec{q},\lambda}^{\dagger} a_{\vec{q},\lambda} + \frac{1}{2} \right)$ $(\frac{1}{2})$ with zero chemical potential μ . We define a one-phonon Green's function $G^{\alpha}_{\vec{q},\lambda}(t,t') =$ $\langle\langle a_{\vec{q}}\chi(t); a_{\vec{q}}^{\dagger}\chi(t')\rangle\rangle^{\alpha}$, where $\alpha \in \{ret, \,adv\}.$ a) Find $G_{\vec{q},\lambda}(E)$. b) Find $G_{\vec{q},\lambda}^{\alpha}(t,t')$.

c) Find the internal energy U.

Problem 4

Consider a simple model of a hydrogen molecule defined by the Hamiltonian $H = \epsilon_0 \left(c_1^{\dagger} \right)$ $\frac{1}{1}c_1+c_2^{\dagger}$ $\big(c_2^{\dagger} c_2 \big) + t c_2^{\dagger} c_1 +$ $t^*c_1^\dagger$ \mathbb{I}_{c_2} , where c_i $(i \in \{1,2\})$ is an operator annihilating an electron at orbital 1s of the *i*-th atom, while ϵ_0 and t are constants.

We define the two retarded Green's functions:

$$
G_{11}^{ret}(t) = -i\theta(t)\langle [c_1(t), c_1^{\dagger}]_+\rangle \quad \text{and} \quad G_{21}^{ret}(t) = -i\theta(t)\langle [c_2(t), c_1^{\dagger}]_+\rangle.
$$

a) Derive the equations of motion for $G_{11}^{ret}(t)$ and $G_{21}^{ret}(t)$.

b) Fourier transform the obtained set of equations using $G(\omega + i\eta) = \int_{-\infty}^{\infty} dt e^{i(\omega + i\eta)t} G(t)$ ($\eta > 0$) and find $G_{11}^{ret}(\omega + i\eta)$. Assuming the free retarded Green's function is given by $G_{11,0}^{ret}(\omega + i\eta) = (\omega + i\eta - \epsilon_0)^{-1}$ find the retarded self-energy $\Sigma_{11}(\omega + i\eta)$.

c) Using the obtained form of $G_{11}^{ret}(\omega + i\eta)$ find the corresponding spectral function $S(\omega + i\eta)$. Perform the limit $\eta \to 0^+$.