Advanced Quantum Mechanics of Many-Body Systems Homework 4

(23 Nov 2024)

Problem 1

Consider a gas of N noninteracting fermions in a d-dimensional box of volume V. The temperature T = 0and the number density n = N/V. Find: a) the Fermi vector k_F , b) the Fermi energy ϵ_F , and c) the energy of the system $E^{(0)}$. Show that $E^{(0)}/N = [d/(d+2)]\epsilon_F$. What is this ratio in the infinite dimensional limit $d \to \infty$? How would you interpret this result? The dispersion relation is $\epsilon_{\mathbf{k}} = \hbar^2 k^2/2m$.

Problem 2

The density of states $D(\epsilon)$ describes the number of accessible states of given energy (per unit volume). Calculate $D(\epsilon)$ for free electrons (where $\epsilon_{\vec{k}} = \hbar^2 \vec{k}^2/2m$) in dimensionality d = 1, 2, and 3. Compare the dependence on ϵ in these three cases. Use the expression: $D(\epsilon) = \frac{1}{V} \sum_{\sigma} \sum_i \delta(\epsilon - \epsilon_{\vec{k}_i}) \rightarrow \sum_{\sigma} \int \frac{d^d k}{(2\pi)^d} \delta(\epsilon - \epsilon_{\vec{k}_i})$ valid in the thermodynamic limit where $V \rightarrow \infty, N \rightarrow \infty, N/V = n \rightarrow \text{const.}$

Problem 3

In the ground state of an unpolarized noninteracting electron gas, there are N/2 spin-up electrons and N/2 spin-down electrons. A spin-polarized state has N_{\uparrow} spin-up electrons and N_{\downarrow} electrons: $N_{\uparrow} = (1 + p)N/2$, $N_{\downarrow} = (1 - p)N/2$, where $p \in]-1, 1[$ is the fractional spin polarization. Show that, in three dimensions, the energy per electron in the ground state of given p is

$$\frac{E}{N} = \frac{E_0}{2N} \left[(1+p)^{5/3} + (1-p)^{5/3} \right] ,$$

where E_0/N is the energy per electron in the unpolarized ground state.

Problem 4

Correlation function. For a system of noninteracting electrons at T = 0, define the following correlation function:

$$G_{\sigma}(\boldsymbol{r}, \boldsymbol{r}') = \langle \mathrm{FS} | \Psi_{\sigma}^{\dagger}(\boldsymbol{r}) \Psi_{\sigma}(\boldsymbol{r}') | \mathrm{FS} \rangle$$
(1)

This is the probability amplitude for the state $|\alpha\rangle = \Psi_{\sigma}(\mathbf{r}') |\text{FS}\rangle$, in which a particle at \mathbf{r}' is removed from the system in the ground state, to be found in state $|\beta\rangle = \Psi_{\sigma}(\mathbf{r}) |\text{FS}\rangle$. $|\beta\rangle$ is the state obtained by removing a particle, with coordinates (\mathbf{r}, σ) , from the ground state. Obtain an expression for $G_{\sigma}(\mathbf{r}, \mathbf{r}')$ in terms of $x = |\mathbf{r} - \mathbf{r}'|$.

Hint: Expand the field operators in terms of annihilation/creation operators: $\Psi_{\sigma}(\mathbf{r}) = \frac{1}{L^d} \sum_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{r}} a_{\mathbf{k}\sigma}$.

Problem 5

Consider a system of electrons which stem from two different energy levels ϵ_1 and ϵ_2 . They are described by the following hamiltonian: $H = \sum_{\sigma} \left[\epsilon_1 a_{1,\sigma}^{\dagger} a_{1,\sigma} + \epsilon_2 a_{2,\sigma}^{\dagger} a_{2,\sigma} + V \left(a_{1,\sigma}^{\dagger} a_{2,\sigma} + a_{2,\sigma}^{\dagger} a_{1,\sigma} \right) \right]$ with $\sigma \in \{\uparrow, \downarrow\}$. a) Show that H commutes with the total particle number operator.

b) Develop a general procedure for computing the energy eigenvalues for arbitrary total electron number $N \leq 4$ making use of the Fock states (i.e. states of given $\{n_{i,\sigma}\}$).

c) Calculate the energy eigenvalues for N = 0 and N = 1.

d) How many Fock states of given N = 2 are there? Show that two of them are eigenstates of H. Find all the eigenenergies for N = 2.