Advanced Quantum Mechanics of Many-Body Systems Homework 1

(11 Oct 2024)

Problem 1

Consider a bosonic particle in one spatial dimension. The hamiltonian is given by $\hat{H} = \hbar \omega (a^{\dagger} a + 1/2) +$ $\hbar\omega_0(a^\dagger + a)$, where $[a, a^\dagger] = 1$, $\omega, \omega_0 > 0$. Find the eigenstates and eigenvalues of the system. Hint: Introduce $\alpha = a + \omega_0/\omega$.

Problem 2

In the so-called Schwinger representation spin is represented by two bosonic operators a and b such that $\hat{S}^+ = a^{\dagger}b, \, \hat{S}^- = (\hat{S}^+)^{\dagger}, \, \hat{S}^z = \frac{1}{2}(a^{\dagger}a - b^{\dagger}b).$ We put $\hbar = 1$.

 $2 = a^{\alpha}, 2 = (2^{\alpha}, 3^{\beta} = (2^{\alpha}, 3^{\beta} = 2^{\alpha})^{\alpha}, 3^{\beta} = 2^{\alpha}$ and β^{α} .
a) Show that this definition is consistent with the commutation relations for \hat{S}^{+} and \hat{S}^{-} .

b) Show that $|S,m\rangle = \frac{(a^{\dagger})^{S+m}}{\sqrt{(S+m)!}}$ $\frac{(b^{\dagger})^{S-m}}{\sqrt{(S-m)!}}|\Omega\rangle$ is consistent with the eigenstates of the total spin S² and its z-component operators. Here $|\Omega\rangle$ denotes the vacuum of Schwinger bosons.

Problem 3

Evaluate the following commutators for fermionic creation/annihilation operators: (a) $[a_i^{\dagger}]$ $_{i}^{\dagger },\sum_{j}a_{j}^{\dagger }$ $\left[a_{j}\right]$ (b) $[a_i, \frac{1}{2}]$ $\frac{1}{2}\sum_{\alpha,\beta}a_{\alpha}^{\dagger}a_{\beta}^{\dagger}$ $_{\beta}^{\text{I}}a_{\beta}a_{\alpha}]$.

Problem 4

Express the current density operator using any one-particle basis $|\nu\rangle$ and the associated creation/annihilation operators $a_{\nu}, a_{\nu}^{\dagger}$.

Hint: Start in the position basis.

Problem 5

Derive the action of the field operator $\hat{\Psi}(\mathbf{x})$ on a general N-particle ket $|\mathbf{y}_1, \dots, \mathbf{y}_N|$. For this purpose first show that

$$
\{\mathbf x_1,\ldots\mathbf x_{N-1}|\hat{\Psi}(\mathbf x_N)|\mathbf y_1,\ldots\mathbf y_N\}=\{\mathbf x_1,\ldots\mathbf x_N|\mathbf y_1,\ldots\mathbf y_N\}.
$$

Subsequently write the r.h.s. of the above equation in a form of a determinant/permanent and perform the Laplace expansion along row N to demonstrate that

$$
\hat{\Psi}(\mathbf{x})|\mathbf{y}_1,\ldots\mathbf{y}_N\rbrace = \sum_{k=1}^N (\zeta)^{N+k} \delta(\mathbf{x}-\mathbf{y}_k)|\mathbf{y}_1,\ldots\mathbf{y}_{k-1},\mathbf{y}_{k+1}\ldots\mathbf{y}_N\rbrace.
$$