Advanced Quantum Mechanics of Many-Body Systems Homework 1

(11 Oct 2024)

Problem 1

Consider a bosonic particle in one spatial dimension. The hamiltonian is given by $\hat{H} = \hbar \omega \left(a^{\dagger} a + 1/2 \right) +$ $\hbar\omega_0 (a^{\dagger} + a)$, where $[a, a^{\dagger}] = 1, \omega, \omega_0 > 0$. Find the eigenstates and eigenvalues of the system. Hint: Introduce $\alpha = a + \omega_0/\omega$.

Problem 2

In the so-called Schwinger representation spin is represented by two bosonic operators a and b such that $\hat{S}^+ = a^{\dagger}b, \ \hat{S}^- = (\hat{S}^+)^{\dagger}, \ \hat{S}^z = \frac{1}{2} (a^{\dagger}a - b^{\dagger}b).$ We put $\hbar = 1$.

a) Show that this definition is consistent with the commutation relations for \hat{S}^+ and \hat{S}^- . b) Show that $|S,m\rangle = \frac{(a^{\dagger})^{S+m}}{\sqrt{(S+m)!}} \frac{(b^{\dagger})^{S-m}}{\sqrt{(S-m)!}} |\Omega\rangle$ is consistent with the eigenstates of the total spin \mathbf{S}^2 and its z-component operators. Here $|\Omega\rangle$ denotes the vacuum of Schwinger bosons.

Problem 3

Evaluate the following commutators for fermionic creation/annihilation operators: (a) $[a_i^{\dagger}, \sum_j a_j^{\dagger} a_j]$ **(b)** $[a_i, \frac{1}{2} \sum_{\alpha,\beta} a^{\dagger}_{\alpha} a^{\dagger}_{\beta} a_{\beta} a_{\alpha}]$.

Problem 4

Express the current density operator using any one-particle basis $|\nu\rangle$ and the associated creation/annihilation operators $a_{\nu}, a_{\nu}^{\dagger}$.

Hint: Start in the position basis.

Problem 5

Derive the action of the field operator $\hat{\Psi}(\mathbf{x})$ on a general N-particle ket $|\mathbf{y}_1, \dots, \mathbf{y}_N|$. For this purpose first show that

$$\{\mathbf{x}_1,\ldots\mathbf{x}_{N-1}|\hat{\Psi}(\mathbf{x}_N)|\mathbf{y}_1,\ldots\mathbf{y}_N\} = \{\mathbf{x}_1,\ldots\mathbf{x}_N|\mathbf{y}_1,\ldots\mathbf{y}_N\}$$

Subsequently write the r.h.s. of the above equation in a form of a determinant/permanent and perform the Laplace expansion along row N to demonstrate that

$$\hat{\Psi}(\mathbf{x})|\mathbf{y}_1,\ldots\mathbf{y}_N\} = \sum_{k=1}^N (\zeta)^{N+k} \delta(\mathbf{x}-\mathbf{y}_k)|\mathbf{y}_1,\ldots\mathbf{y}_{k-1},\mathbf{y}_{k+1}\ldots\mathbf{y}_N\} \ .$$