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The quantum statistical treatment of the Rutherford
model is analyzed, considering matter as a system of point
charges (electrons and nuclei). First, the solutions of differ-
ent fundamental problems are discussed, such as the di-
vergence of the partition function, elaborated by Herzfeld,
Planck, Brillouin and Rompe. Beyond this analysis in the
historical context, the modern state of art is presented
and new results are given which explain why bound states
according to a discrete part of the spectra occur only in a
valley in the temperature-density plane. Based on the ac-
tual state of the quantum statistics of Coulomb systems,
virial expansions within the canonical ensemble and the
grand ensemble and combinations are derived. Further-
more, the transitions along isotherms are studied: (i) the
formation of bound states occurring by increasing the den-
sity from low to moderate values, (ii) the disappearance of
bound state effects at higher densities. Within the physical
picture isotherms of pressure for hydrogen are calculated
in a broad density region. It is shown that in the region be-
tween 20000 K and 100000 K and particle densities below
1022 cm−3 the cross-over from full to partial ionization
may be well described by the contributions of extended
ring diagrams and ladder diagrams.

1 Introduction

In May 1911, Rutherford came forth with a model for
the structure of atoms which provided a first understand-
ing why electron scattering can so deeply penetrate into
the interior of atoms, so far unexpected experimental re-
sults [1]. Rutherford explained his scattering results as
the passage of a high speed electron through an atom

having a positive central charge +Ne, and surrounded by
a compensating charge of N electrons [1]. In Rutherford’s
model the atom is nearly empty, it is made up of a central
charge and electrons and the glue keeping the system to-
gether are the Coulomb forces. Today we denote the posi-
tive central charge as the atomic nucleus, though Ruther-
ford did not use the term "nucleus" in his paper. The cen-
tral point charge is surround by a cloud of point elec-
trons orbiting around the nucleus. The first quantum-
mechanical treatment of the Rutherford model was given
in 1913 by Bohr. According to the Bohr theory the ener-
gies and radii of the orbits are (in Gaussian units)

Es =− μe4

2ħ2s2 ; as = s2aB ;

(1)

aB = ħ2

μe2 ; μ= mem+
me +m+

.

Here and in the following we denote the so-called main
quantum number by s in order not to be mixed with
the density n. According to the Bohr model there are in-
finitely many levels close to the series limit s → ∞. A
first statistical theory of the Bohr model was developed
already in 1913 by the Austrian physicist Karl Herzfeld [2].
Herzfeld detected that the Bohr model had a serious de-

∗ Corresponding author E-mail: ebeling@physik.hu-berlin.de
∗∗E-mail: wolf-dietrich.kraeft@uni-rostock.de
◦ E-mail: gerd.roepke@uni-rostock.de
1 Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15,
12489 Berlin, Germany

2 Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald,
Felix-Hausdorff-Str. 6, 17487 Greifswald, Germany

3 Institut für Physik, Universität Rostock, Universitätsplatz 3, 18055
Rostock, Germany

© 2012 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 311



O
rig

in
al
Pa
pe
r

W. Ebeling et al.: On the quantum statistics of bound states within the Rutherford model of matter

ficiency, the internal atomic partition function

σ(T )= ∑

s,l ,m
exp

(−βEs
)=

sm∑

s=1
s2 exp

(
I

s2kB T

)
;

(2)

I = μe4

2ħ2s2 .

is divergent (I =−E1: ionization energy).
We see that the contributions to the internal atomic

partition function for hydrogen according to the defini-
tion by Eq. (2) increase as s2 (see Fig. 1) and the sum can
get any value in dependence on the maximal number sm

and is divergent. This problem exists for all elements. It is
inherent in any Coulomb system, e.g. the electron - hole
plasma in excited semiconductors that will not be con-
sidered here. Here we deal mainly with hydrogen which
is the most abundant element in the Universe, its physi-
cal properties raised, in the past, many works.

The development of the quantum statistics of plas-
mas is intimately connected with the requirements of
a new scientific discipline - astrophysics. In order to
bring some systematics into the existing observations, to
understand why spectra appeared under definite condi-
tions, a theory was required which provides the abundan-
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Figure 1 (online color at:www.ann-phys.org) Left panel: The terms
in the atomic partition function defined by Eq. (2) for two tem-
peratures corresponding to βI = 5 (red and green curves above)
and βI = 10 (blue and purple curves below). Up to terms of or-
der Esm � kB T the terms in the usual partition function de-
crease monotonically and then they start to increase as s2 lead-

ing to the Herzfeld divergence problem. For comparison we show
the Brillouin-Planck-Larkin renormalized partition function with
the terms of a convergent series. Right panel: The region in the
density-temperature plane of hydrogen where the formation of
bound states is expected, see text.
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cies of atomic energy levels in stars. Such a theory was
created on the basis of the Rutherford-Bohr model by the
work of Eggert and Saha around 1920. Their work is an
application of thermodynamics to the Rutherford-Bohr
model, which was inspired by the papers of the Nernst
school. The ionization problem was studied within the
chemical picture and using Sackur’s and Tetrode’s statis-
tical expression for the entropy of gases. Eggert published
a first approach in 1919 [3], his paper came to the atten-
tion of the young bengalic physicist Saha, who succeeded
to improve the approach considerably [4,5]. Saha consid-
ers, in the paper from 1921, Calcium plasmas as an exam-
ple. Formulating his equation for hydrogen we get for the
fraction of ionized atoms α the relations

1−α

α2 = nK ; K =Λ3 exp(βI ); Λ= h
√

2πμkB T
. (3)

The solution of this quadratic equations is given by

α= A(γ), γ=nK (T ), A(x)= 1

2x

[�
1+4x −1

]
. (4)

Considering an ideal mixture of electrons, ions and
atoms we obtain for the pressure

βp = (1+ A(γ))n. (5)

We call the function A(γ), which monotonically decrea-
ses with the density, the Saha function.

At high densities where the mean distance of protons
approaches the Bohr radius, this leads to an enormous
pressure acting on the neutrals which will finally be de-
stroyed; we note however that this limit is not described
in the present approach. The region were bound states
may exist is shown in Fig. 1.

Eggert and Saha used the thermodynamic approach
of Sackur and Tetrode which needs only the binding en-
ergy, avoiding this way the problem of divergence of the
partition function. For more accurate treatment of astro-
physical tasks the most important problem was the diver-
gence of the partition function of the Bohr atom. As al-
ready said above, the terms in the atomic partition func-
tion for hydrogen according to the definition by Eq. (2)
diverge as s2 (see Fig. 1). The easiest way is to cut the
sum at the lowest terms corresponding to |Es | � kB T .
This way of solving the divergence problem is due to the
classical paper of Planck published in 1924 [6], later in
1938 applied to special plasma problems by Riewe and
Rompe [7]. Developing Plancks approach Brillouin pro-
posed in 1932 a more smooth way of removing the diver-
gence which led to the formula

σBPL(T )=
∞∑

s=1
s2[exp(βI /s2)−1− (βI /s2)]. (6)

This procedure was justified only in 1960 by Larkin [8]
and subsequently by the present authors in collabora-
tion with D. Kremp by using strict quantum-statistical
methods [9–14]. For later purpose it is interesting to note,
that this so-called Brillouin-Planck-Larkin (BPL) parti-
tion function may be expressed (just after developing
the exponential function) by a different series which con-
tains the Riemann ζ function

σ(T )=
∞∑

k=2

ζ(2k −2)(βI )k

k !
. (7)

In the present paper we will give a systematic quantum-
statistical statistical theory of matter within the Ruther-
ford model, including in particular the equation of state.
We concentrate on the so-called physical picture which
stays within the Rutherford picture and avoids the intro-
duction of chemical species like atoms, molecules etc.
We note that in some earlier work the Saha theory has
been proven to become asymptotically exact in zero-
temperature and zero-density limit [15–17]. Here we re-
strict ourselves mainly to a region of practical interest,
i.e., to temperatures between 20000 K and 100000 K
and particle densities between 1018 and 1022 per cm3.
In some of our earlier work the transition to a chemical
picture was made following the principle of equivalence
that bound states are to be treated on the same footing
as free particles [10, 13, 18]. This approach was quite suc-
cessful in the description of partial ionization [13, 19–23].
On the other hand, one has to accept that in the region
of high densities several serious difficulties appear which
are mainly connected with the impossibility of a clear dis-
tinction between free and bound states in a dense system
[24]. This is the reason why we stay here within the phys-
ical picture taking into account the important higher or-
der terms [25]. In a similar spirit, but using different tech-
niques, a consistent treatment of bound state contribu-
tions within the physical picture has been constructed
already by Alastuey et al. [26–28]. We show here first a
treatment of the Coulomb singularities in the framework
of the virial expansions within the canonical ensemble,
then we discuss the fugacity expansions and identify the
higher order contributions which allow a Saha-type ap-
proximation. In the last part we investigate the role of the
identity of electrons within the grand canonical ensem-
ble.

In the first part of this work we will to show that
the Brillouin-Planck-Larkin procedure provides the most
natural way to avoid the divergencies for non-degenerate
systems. In another work [41] we study degenerate sys-
tems and show that a consequent treatment of the iden-
tity of electrons in the Hartree-Fock approximation in-
cluding bound states is a key for the treatment of hydro-
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genic bound states. The present approach is based on the
method of Green’s functions as developed in [13,14,18,29,
30].

Any successful description of plasmas has to go be-
yond the Saha theory which is something like the low-
est density order approximation for plasmas. This way
our strategy should be to obtain first an approximation
equivalent to the Saha description and then to go further.
The derivation of Saha-type approximations from quan-
tum statistics was first studied by Planck, Fowler and Bril-
louin [6, 31, 32]. Since then it is a topic of permanent
interest due to the importance of Saha-type equations
for experimental work and for many technological ap-
plications. A first big progress in the strict quantum sta-
tistical treatment was achieved in the 60th by papers of
Montroll, Ward, Vedenov, Larkin, Abrikosov and others
[8,33,34] and in subsequent work [9,10,12–14,18,35–38].
We note that a consistent description of bound states in
macroscopic physical systems is a hot problem of mod-
ern quantum statistics and was treated also indepen-
dently and using different techniques by other workers
[26–28].

2 The model of Planck for hydrogen plasmas

Planck’s work was inspired by the earlier papers of Eg-
gert and Saha that was an application of thermodynam-
ics and Sackur’s and Tetrode’s expression for the entropy.
Accordingly Eggert and Saha needed only the binding
energy, avoiding this way the problem of divergence of
the partition function. In his Annalen paper from 1924,
Max Planck uses a more consequent statistical approach
based on the partition function. He splits first the atomic
partition function into three contributions

σ(T )=σ3(T )+σ2(T )+σ1(T ). (8)

where σ3(T ) is the contribution of the lowest bound
states |Es | > kB T , σ2(T ) is the contribution of the bound
states below the series limit and σ1(T ) is the entire
remainder. Using a rather complicated quasiclassical
derivation Planck was able to show that due to compen-
sation effects it holds

σ2(T )+σ1(T )� V

Λ3 . (9)

In other words the sum of the second and the third con-
tributions reduces to the partition function of an ideal
gas, i.e. the all diverging contributions cancel each other.
Planck’s paper was considered in those years to be very
important, so it was discussed in some detail in several

textbooks and monographs, e.g. in the books written by
Brillouin [32] and Fowler [31]. We follow here mostly Bril-
louin. According to Brillouin [32], the cancellation effect
found by Planck is exactly true only if one makes the par-
ticular choice

σ3(T )=σBPL(T ). (10)

As the derivations of Planck, Fowler and Brillouin are very
difficult to understand we give the proof of Planck’s im-
portant statement in a more easy version which however
uses the same physical assumptions [9]. We start with
Planck’s final expression

F = kB T N [α[ln(nΛ3
eα)+1]+α[ln(nΛ3

i α)+1]

+ (1−α)[ln(nΛ3
a(1−α))− ln(σ3(T ))+1]]+Fex. (11)

Here Fex is the excess part of the free energy. Planck and
Brillouin claim that this contribution is zero, Fex = 0; how-
ever these researchers did not include screening, an ef-
fect detected nearly at the same time by Debye. In the
following part of this section we repeat the derivation of
the excess part but include also the contributions from
screening effects using a semiclassical screened cluster
expansion approach [9, 39]. In order to find the excess
free energy of a plasma we have to calculate all contri-
butions beyond the ideal contributions of electrons, pro-
tons and atoms. Following [9, 10] and using the classical
technique of screened virial expansions [39] we find in-
cluding the Debye limiting law and the second virial co-
efficents

Fex =−kB T V

[
κ3

12π
+n2

e B̃ee +2neni B̃ei +n2
i B̃i i

]
+ . . . ,

(12)

B̃ab = 2π
∫

dr r 2
[

Sab exp(gab +βVab )−1− gab − 1

2
g 2

ab

]
.

(13)

The Boltzmann factors without bound state contribu-
tions are given by [9]

See (r ) = Si i = exp(−βe2/r ), Vab = eaeb/r,

gab =Vab exp(−κr ) (14)

Si e(r ) = exp

(
βe2

r

)
− 4π

√
2πμkB T

∫p0

0
d p p2

× [
exp(−βE(p,r ))−1+βE(p,r )

]
, (15)

E(p,r ) = p2

2μ
− e2

r
; p0 =

√
2μe2

r
; κ2 = 8πnβe2. (16)

Here the second contribution in Si e is just subtracting
the bound state contribution from the full Boltzmann
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factor in a classical approximation. Up to the Debye con-
tribution, which was not yet known to Planck, since is
was just in print when Planck wrote his paper, this is
just what Planck and Brillouin calculated. After tedious
calculations one can show analytically with a numerical
check [9], that the sum of the integrals beyond the Debye
term cancel each other and gives zero.

Fex =−kB T V

[
κ3

12π
+O (n5/2)

]
. (17)

The excess free energy consists in the given quasiclassical
approximation only of the Debye term and some higher
order corrections. In particular, there is no contribution
in the quadratic order. This way we could justify the re-
markable result of Planck and Brillouin, we just found
a correction, the Debye term. Including this essentially
classical term we get

βp = (1+α)n − 1

2
(8πβe2)3/2(αn)3/2, (18)

α = A(γ) according Eq. (4). A typical picture of the pres-
sure in the Saha approach shows that bound states exist
only in certain valley in the density-temperature plane,
see Fig. 1. We will see later that the bound state contri-
butions as well as the Debye contributions are responsi-
ble for a reduction of the pressure in comparison to the
ideal pressure (see Fig. 2). The Saha equation and the cor-
responding pressure do not describe the region of high
densities, the Debye term yields just a first correction. At
higher densities another important influence is due to
the Fermi pressure in the region of electron degeneracy.
In order to check for the influence of electron degener-
acy we compare with the ideal gas pressure including the
Fermi pressure of the electrons:

βpF
e (β,n) =n[1+0.08839nΛ3

e −0.00083n2Λ6
e

+0.000012n3Λ9
e +·· · ];

Λe = h
√

2πmekB T
. (19)

Looking at typical isotherms (see e.g. Figs. 2, 3) we see
that the pressure related to the ideal pressure decreases
with growing density and the pressure increases again.
This demonstrates that the region of bound state for-
mation where the pressure is significantly smaller than
the ideal pressure of an electron-proton gas is a limited
region in the density-temperature plane (the valley of
bound states).

The main task of this work is the study of the two tran-
sitions:
(i) the formation of bound states occurring at the cross-
over from fully ionization to the region were bound states

are formed (we have partial ionization) observed with in-
creasing density,
(ii) the destruction of bound states beyond the valley of
bound states in the high density region.

The region of our interest in the density-temperature
plane where bound states appear is demonstrated in
Fig. 1. We determine here the first transition by the den-
sities where p/2nkB T decreases below the value 3/4
and identify the second transition by the condition that
pF /2nkB T exceeds the value 1, that means the Fermi
pressure pF gives the overall dominant contribution.
From the physical point of view we should expect that
the real pressure should be nearer to the highest con-
tribution, i.e at lower densities nearer to the pressure
given by the Saha equation and at high densities nearer
to the Fermi pressure. Later we will confirm the result
that bound states occur only on an island in the T − n
plane. In our primitive extended Saha model, the forma-
tion of atoms is described by the mass action law which is
part of the Saha model and the destruction at high den-
sity is described in a very rough approximation only by
the strong increase of the ideal Fermi pressure. In the fol-
lowing sections we will show how these effects are more
correctly described by methods of quantum statistics. We
present in Fig. 1 first a horizontal line corresponding to
the density of n = 1023 cm−3. For such a density the the
mean distance between protons (or electrons) defined by

4π

3
nr 3

0 = 1 (20)

is around the Bohr diameter.

r0 � 2aB ; na3
B � 0.03. (21)

For larger densities (smaller average distances) the for-
mation of bound states may be excluded, the plasma
behaves nearly as an ideal Fermi gas since there is not
enough space for forming atomic orbitals or molecular
orbitals. The disappearance of bound states is referred to
as Mott condition, corresponding to the fact that atoms
are destroyed if the mean distance of the electrons is
much smaller than the Bohr radius. Such situation was
discussed in [30, 40, 41]. For more detailed information
see [14, 36]. We show, in Fig. 1, a line α � 0.5. The Saha
equation provides for the condition α= 0.5 the estimate

γ0 =nK (T )= nΛ3 exp(I /kB T )= 2. (22)

We are here mainly interested in the region of atomic
bound states. Near to the upper border of the corridor re-
gion shown in Fig. 1 only the atomic ground state exists,
but near to the lower border many bound states are to be
expected and we have to avoid the divergence of the par-
tition function by appropriate renormalization. At lower
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temperatures T ≤ 30000 K we may expect also the forma-
tion of molecules in a certain density region.

3 Derivation of the Brillouin-Planck-Larkin
partition function by low-density virial
expansions

Following our earlier papers [12, 35] and books [13, 14]
we use the method of cluster expansions in order to de-
rive the exact virial functions. We start here with a treat-
ment of the Coulomb contributions in the framework of
the virial expansions within the canonical ensemble. For
a real quantum gas with only short range forces the free
energy may be at low density described by a virial expan-
sion [12, 35]

F = F B
id −kB T V

[
∑

ab
nanbBab +

∑

abc
nanbnc Babc +·· ·

]

.

(23)

Bab = const Tr[exp(−βHab)−exp(−βH0
ab)], (24)

where the Hamiltonian of pairs of species a and b is de-
fined as

Hab =− ħ2

2μab
Δ+Vab . (25)

Using the resolvent representation for the exponential
operator we get

Bab =
4π3/2(1+δab )λ3

ab

(2sa +1)(2sb +1)

1

2πi

∫

c
exp(−βz)F (z)d z,

λab = ħ
√

2μabkB T
,

F (z)=Tr

[
1

Hab − z
− 1

H0
ab − z

]

. (26)

After some transformation we arrive at the following rep-
resentation by Jost functions D�(z)

F (z)= (2sa +1)(2sb +1)

(1+δab)

∞∑

�=0
(2�+1)

×
[

1±δab
(−1)�

(2sa +1)

]

(−1)
d

d z
lnD�(z). (27)

The Jost functions D�(z) are analytical functions with
poles at the bound states and a branch cut at the posi-
tive real axis defined by the scattering phase shifts. These

functions as well as other scattering quantities are exactly
known for Coulomb systems. However in the procedure
of calculating the integrals there is a difficulty due to the
long range character of Coulomb forces and the neces-
sity to introduce some screening procedure. In analogy
to the classical case discussed in the previous section we
may write including screening effects

F = F B
id −kB T V

×
[

κ3

12π
+∑

ab
nanbB̃ab +

∑

abc
nanbnc B̃abc +·· ·

]

. (28)

Here the tilde denotes that screened potentials were in-
cluded into the virial coefficients. In order to reduce the
difficulties connected with a complete derivation we pro-
ceed as follows: The screening procedure is necessary
only for the lowest orders of the interaction parameter e2.
Higher orders in e2 beginning with e8 have already a de-
cay rate of e8/r 4 and do not need any screening. Taking
into account that screening refers to the low orders we
split the second virial coefficients into two parts

B̃ab =G ′B̃ab +G ′′B̃ab ; G ′′B̃ab =G ′′Bab , (29)

G ′B̃ab =O(1)+O(e2)+O(e4)+O(e6),
(30)

G ′′Bab =O(e8)+O(e10)+·· · .

Let us first calculate the higher orders, remembering that
according to Brillouin and Larkin, here the contribution
of the bound states are to be expected. Introducing here
the known Jost functions, the final result reads

G ′′Bab = 2π3/2λ3
ab[1+βea ebκ]

∑

m≥4

ξm
ab

2mΓ(m/2+1)

×
[
ζ(m −2)±δab

(1−22−m)

2sa +1
ζ(m −1)

]
. (31)

The contributions in lower order have to be calculated
term by term. The result of tedious calculations is (C =
0.577 – Euler’s constant)

G ′B̃ab = 2πλ3
ab [1+βea ebκ]

×
[
−1

6
ξab −

�
π

8
ξ2

ab −
1

6

(
1

2
C + ln 3− 1

2

)
ξ3

ab

]

+ π

3
(βeaeb)3[(1+βea ebκ) ln(3κλab −βea ebκ(1− ln(4/3)]

±δab [1+βea ebκ]

[�
π

4
+ ξab

2
+
�
π(ln2)

4
ξ2

ab +
π2

72
ξ3

ab

]
.

(32)
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Note that most difficulties are connected here with the
term of order ξ3

ab [13, 14, 36].
For charge and mass symmetrical systems (all masses

are equal and the reduced masses are just half of it) the
odd contributions cancel and we get in the case of hydro-
gen for the sum, taking into account βI = ξ2/4:

∑

ab
G ′′Bab = 2π

�
π

∞∑

k=2

ζ(2k −2)ξ2k

22k k !
= 4π

�
πλ3

i eσBPL(T ).

(33)

This way we have given a strict derivation of the Brillouin-
Planck-Larkin partition function given by Eq. (6). The fi-
nal results for the equation of state of hydrogen may be
expressed in form of a density expansion:

βp(β,n)= 2n −2n(8πβe2)3/2�n −2n2[Λ3σBPL(T )]

×
[

1+ 3

2
βe2κ)

]
−2n2K ∗(T )]+L(T )n5/2+O (n3 logn).

(34)

The function K ∗(T ) which appears in the formula Eq. (34)
depends only of the temperature. This transcendent
function is exactly known [13, 14, 36] and may be calcu-
lated as an infinite series in ξ using the expressions for
Bab given above. There are also tables for hydrogen avail-
able [13]. However since the full expression is a quite long
and not easy to handle, we will give here only a rather
good (in numerical respect) and simple approximation

K ∗(T )=−1

2
Λ3βI − 1

8
�

2
Λ3. (35)

This expression is exact with respect to the largest asymp-
totic term O (I /kB T ) and was checked with the available
tables [13]. As a technical remark we note, that the terms
not contained in the approximation Eq. (35) are mainly
given by the contributions of the odd powers in ξ to the
pressure. We do not give here a detailed discussion since
these terms give only a small contribution to the pres-
sure in the region 104 K < T < 105 K. The exact expres-
sion may be found in original articles [10, 12] and in sev-
eral books [13, 14, 36]. The complete term of order n5/2

has also been computed in several works [37, 42, 43]. We
will not discuss this matter here since we use here some
approximations for L(T ) and because this function does
not contain bound state contributions. There were dif-
ferent attempts to determine such contributions n5/2 in
the framework of Green’s function techniques. Here we
mention [37, 38]. These results should be compared to
the corresponding expressions for the n5/2 terms given
by [43, 44]. Though there are results which seem to be in
agreement with each other, there remains still some open

questions [41], see [45]. Here we are interested mainly
in the bound state effects and restrict ourselves to the
asymptotic results for the case ξ2

i e � 1 what is equivalent
to T  I /kB . For the case of hydrogen and lower temper-
atures T  I /kB we get in asymptotic approximation the
final results for the pressure at small densities:

βp(β,n)= n

[
1+ 1

8
�

2
nΛ3

e +·· ·
]

+n −2n
1

2
(8πβe2)3/2�n−n2Λ3(βI )+n2Λ3σBPL(T )

×
[

1+ 3

2
βe2κ

]
+·· ·+O (n5/2)+O (n3 logn). (36)

This way we have shown that in the quantum-statistical
expressions for the thermodynamic functions appears
the Brillouin-Planck-Larkin partition function in a natu-
ral way as a convergent infinite sum starting with terms
of order e8. As mentioned in the previous section, a first
approximation to this partition function was obtained
by Planck [6] and a first explicit derivation was given by
Brillouin [32]. Later an asymptotic quantum-statistical
derivation was given by Larkin [8]. We follow here Larkin’s
asymptotic approach which was extended later in [10]
but include more terms than in the earlier work. Exact
expressions for the orders O (n) and O (n5/2) in the pres-
sure including all orders in e2 were derived by using clus-
ter expansion method and Green’s function methods in
[10, 12–14, 35, 36] and by using different techniques in
[26–28]. We will not give a complete survey about the ex-
isting exact results about the lower orders in the density
but will instead direct the following study on the most
important higher order terms. However let us still make
a remark about the foundation of the Brillouin-Planck-
Larkin partition function. There seems to be a never-
ending discussion about the Brillouin-Planck-Larkin par-
tition function. Just to give one example, Starostin and
Roerich [46] derived recently a quite different expression.

Our point of view which is based in particular on the
results obtained here is the following:
(i) The quantum-statistical result for the contribution
O (n2) to the pressure is exact. The result of several groups
working with independent methods give the same results
(see e.g. [14, 26]).
(ii) The BPL-partition function is asymptotically in full
agreement with the second virial coefficient. There is a
small freedom in the special choice of a partition func-
tion, as far as the asymptotics is not violated. However so
far no good reason is to be seen, why we should leave the
BPL- partition functions and make another choice [24].
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(iii) According to Onsager’s bookkeeping theorem, in a
correct theory any small change of the partition function
does not matter, the final results for any physical observ-
ables are stationary with respect to small changes [24].
Some of the critics of the BPL partition function is just
based on intuitive arguments and is not based on a
serious revision of the quantum-statistical foundations
given in the work of Vedenov and Larkin and the subse-
quent papers.

Admittedly the quantum statistics behind this for-
mula is very complicated but nevertheless it is strict.
With respect to the intuitive arguments we only want to
say, the formal reasons for having no terms of order O(e0)
and O (e4) in the Planck-Brillouin-Larkin formula is that
these terms were consumed already in the formulation of
the ideal terms which are O (e0) and the screening terms
O (e3), and O (e4) which arise formally by summing up an
infinite series in O (en ). This procedure consumes some
terms of order O (e3), and all contributions of order O (e4)
to the partition function which cannot appear anymore
in exact expression for the partition function, if double
counting of terms is strictly avoided. Another, formally
equivalent argumentation is based on the fact of com-
pensation of the terms below the series limit and above
the series limit is most essential in this context [36]. We
want to underline again that there is no unique choice
of the partition function for hydrogen, there are other
possibilities [24]. Essential is however, that all possible
choices should be compatible with the quantum statis-
tical formulae given above. That means among the many
admittable versions of partition functions, the essential
criterion for correctness is Onsager’s bookkeeping rule.
In other words the question is: Is there a correct count-
ing of all contributions or not. Is there a check for double-
counting or not [24]. As a matter of fact, all partition func-
tions which work without a BPL- or equivalent subtrac-
tion of first order terms may have the problem of double-
counting of certain diagrams of order O (en ).

Using the asymptotic expression for K ∗(T ), which is
asymptotically exact for kB T  I , the pressure may be
written in a different form

βp(β,n)= n

[
1+ 1

8
�

2
nΛ3

e +·· ·
]

+n − κ3

24π

[
1− 3

�
π

8
(κλ)+ 3

10
(κλ)2 +·· ·

]

−n2[Λ3σBPL(T )][1−βe2κ]+O (n3 logn). (37)

We combined one of the two contributions from K ∗(T )
with the ideal electron pressure and the other one with
the Debye law. Further we introduced the mean thermal

wave lengthλ=λi e which is an effective quantum length,
in some correspondence to the Debye-Hückel parame-
ter in the classical theory (μ - reduced mass). We have to
note here again that the results given above are not fully
complete in the order n5/2 and in missing higher order
corrections. However this problem seems to be not rele-
vant for the bound state problem. A formally equivalent
form of Eq. (37) which shows better the general structure
is the following

βp(β,n)

= n

[
1+ 1

8
�

2
nΛ3 +·· ·

]
+n −nγ[(1−βe2κ+·· · )+·· · ]

− κ3

24π

[
1− 3

2
γ+·· ·

][
1− 3

�
π

8
(κλ)+ 3

10
(κλ)2 +·· ·

]

+O (n3/2), (38)

γ=Λ3σBPL(T )= 8π3/2λ3
i eσBPL(T ). (39)

Summarizing we may state that there exists an asymp-
totically exact expression for the pressure of hydrogen in
the limit of small densities, which is given in the formu-
lae Eqs. (37), (38) which we have drawn in Fig. 2. This
approach is compatible with the extended Saha theory
what encourages us to proceed in this direction. Let us
first investigate Eq. (38) as it is, without completing the
series. Looking at the curves in Fig. 2 we see that the
screening effects and the corresponding BPL effects tend
to lower the pressure. We see that this lowering is too
large at increasing densities.

The structure of Eq. (38) suggests that the expressions
in the parenthesis may be only the first terms of some
infinite series with respect to nΛ3, κ and γ. Just to give
a first example: The first series is evidently nothing else
than the ideal electron pressure, which may easily be ex-
tended to an infinite series using the known expression
for the ideal Fermi pressure. There is no question that
all these terms appear in the full cluster series. In order
to find the higher orders in the other series we have to
use a more complicated procedure which is based on fu-
gacity expansions [10, 13, 47]. According to our general
philosophy, the strong decay of the pressure observed
in second order density expansions (Fig. 2) is due to the
fact that important higher order terms corresponding to
some infinite series were omitted in the derivation based
on the canonical ensemble. To circumvent this difficulty
is not an easy task. We mention that Alastuey et al. [27,28]
succeeded already in deriving a Saha type expression in
summing up an infinite series of terms. Here we follow
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a similar idea but go an alternative way through fugac-
ity expansions. As shown much earlier, fugacity-like ex-
pansions are equivalent to mass-action laws. This was
used in plasma theory by Bartsch, Ebeling and others
[10, 13, 47] and worked out in large detail by Rogers et
al. [48]. We mention that Rogers et al. succeeded to show
that extended fugacity expansions allow an excellent de-
scription of measurements for the oscillation modes of
the sun [49].

4 Combined density-fugacity expansions
including nonlinear ring and ladder
contributions

At higher densities a systematic quantum statistical ap-
proach to the pressure of plasmas can be given based on

the Green’s function representations of the pressure. The
central relation for the pressure reads [13, 14, 18]

p(β,μe ,μi ) = pi d

− 1

2V

∫1

0

dλ

λ

∫
d1d 1̃V (11̃)G2(1, 1̃,1++,1+ : t̃1 = t+1 ), (40)

where 1 = {p1,σ1} denotes momentum and spin vari-
ables. The Green’s function representation works in the
grand canonical ensemble which provides us a series in
the fugacities

za = 2sa +1

Λ3
a

exp(βμa) = na exp(βμex
a )

instead of a series in the densities. Note that μex
a is the

excess part of the chemical potential (the part beyond
the ideal Boltzmann term) and that therefore za → na for
small densities. At small fugacities (densities) the pres-
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Figure 2 (online color at: www.ann-phys.org) Pressure
related to the total classical pressure 2nkB T at con-
stant temperaturesT = 0.1I andT = 0.15I in depen-
dence on the density (log-scale). The result of density
expansions up to 2nd order virial terms (red and green)
are compared with corresponding fugacity expansions.
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sure is given as an expansion in the fugacities

βp =β
∑

a
za +

∑

ab
za zbbab(κg )+ ∑

abc
za zb zcbabc (κg )

+
∑

abcd
za zb zc zd babcd (κg )+·· · , (41)

where

κ2
g = 4πβ

∑

a
zae2

a

is the grand-canonical screening length. The structure of
this series is similar to the density series, we have e.g. sim-
ilar screening effects, however there are some differences.
e.g. the fugacity series contains more diagrams. The con-
tribution of bound states of an electron and an ion (atom)
is contained in the contribution zezi bei , the contribution
of molecules is contained in the term z2

e z2
i bei ei .

General expressions for screened fugacity series were
written down first by Montroll and Ward, Vedenov and
Larkin and explicit calculations were done by DeWitt and
Larkin [8, 33, 50]. Semiclassical fugacity series were given
by several workers [13, 47].

We are interested here mostly in the bound state ef-
fect and may simplify our calculations by using approxi-
mations allowed for the region T ≤ 157000 K where the
bound states appear. Further in order to simplify the
quite complicate evaluation of these diagrams we restrict
the theory to the region of non-degenerate plasmas. As
to be seen from the above formulae, the difference of the
masses of electrons and ions (protons) do not play a role
in the region |ξab | 1 and the plasma behaves asymptot-
ically like a system with equal masses and equal relative
De Broglie wave lengths λ = λi e . In the lowest approxi-
mation corresponding to Eq. (37) we find for low temper-
ature hydrogen plasmas the following results valid up to
order O(z5/2) [13, 14].

βp = ze + zi +
κ3

g

12π
f (κgλ)

+8πze ziλ
3 exp

[
1+βe2κg

]
σBPL(T )+·· · , (42)

where the grand-canonical screening quantity is now de-
fined by

κ2
g = 4πβ(ze + zi )e2,

and the quantum-statistical ring function is a transcen-
dent function [10, 13] with the series

f (x)=
[

1− 3
�
π

16
x + 1

10
x2+·· ·

]
. (43)

The relations between densities and fugacities are given
by

ni = zi
∂βp

∂zi
= zi +

κ2
g

16

∂

∂λ
(κgλ f (κgλ))

+4πze zi [1+βe2κg +·· · ]λ3σBPL(T ) · · · , (44)

ne = ze
∂βp

∂ze
= ze +

κ2
g

16

∂

∂λ
(κgλ f (κgλ))

+4πze zi [1+βe2κg +·· · ]λ3σBPL(T ) · · · . (45)

We will show that going by iterations from the fugacity
variable to the density this result occurs to be equivalent
to Eq. (37). In order to proceed with this complicated
system of equations we go to the special case of non-
degenerate hydrogen at lower temperatures T ≤ I /kB

and satisfying nΛ3 ≤ 1. As shown above, in this region
the differences of the electron ion masses do not mat-
ter and we my assume ze = zi = z. In this approximation,
Eqs. (42), (44), (45) read

βp = 2z +
κ3

g

12π
f (κλ)+8πz2λ3σBPL(T )+·· · , (46)

n = z +
κ2

g

16π

∂

∂λ
(κgλ f (κgλ))+8πz2λ3σBPL(T ) · · · . (47)

In order to represent the pressure by densities, we ne-
glect, in a first step, the bound state contributions. Ex-
pressing first the fugacities by densities we find

z =n exp

[
−βe2κ

2
G(κλ)

]
, (48)

where [10, 13]

G(x) = 1−
�
π

4
x + 1

6
x2−·· · . (49)

Then excluding the fugacities from the series step by step
we arrive at the representation

βp = 2n − κ3

24π
φ(κλ). (50)

Here φ(x) is another transcendent function, related to
f (x) and f ′(x), the so-called pressure ring function
which is an analogue of the Debye-Hückel ring function
[13, 33, 50]. The first terms of the series expansion read

φ(x)=
[

1− 3
�
π

8
x + 3

10
x2−·· ·

]
. (51)
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A full representation of this quite complicated transcen-
dent function may be obtained by methods similar as de-
scribed in [13]. We found the infinite series

φ(x)= 1−
�
π

3

∞∑

k=1

(k +1)(k +3)x2k−1

2k k !

+ 1

3

∞∑

k=1

(k +1)(k +3)x2k

2k (2k −1)!!
. (52)

The asymptotic behavior of this function is given by

φ(x)= 3

x2 . (53)

This suggests the convenient Padé representations,
which will be used in the calculations

φ(x)= 24

24+9
�
πx +8x2

; G(x) = 1

1+ (
�
π/4)x

. (54)

A representation by error functions reads

φ(x)= 3
�
π

3x
+ 4

�
π

x3
− 4

�
π

x3
exp[x2/4]

−
�
π

3x
[1−Φ(x/2)]+ 1F1. (55)

The saturating behavior of the nonlinear functionΦ(x) in
comparison to its linear approximation is shown in Fig. 3.

We summarize the results we obtained so far: By
means of grand-canonical methods we succeeded to ob-
tain some infinite series in the screening parameter κ in-
stead of the first linear and quadratic terms only, as we
found in the density series, (see Eq. (38)). This summing
up a series in κ which leads to a saturating function (see
Fig. 3) and improves very much the behavior at larger
densities as we will show.

In our representation Eq. (38), there appears also an-
other series expansion in the density parameter γ. In or-
der to sum up this series in γ, we proceed in a similar
way. In order to understand the structure of the series we
study at first the bound state contributions, neglecting
the contributions coming from the ring term and from
the terms due to degeneracy. Further we replaced the
factor 1−βe2κ by a more smooth exponential function
exp(−βe2κ). This yields the simple quadratic equation

n = z +8πz2λ3σBPL(T ). (56)

By the way, this formula shows already that the fugacities
of the electrons and the protons should be rather small
in the bound state region where the partition function
is large. The quadratic equation for the fugacities can be

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5
A

(x
);

 P
hi

(x
)

x

Figure 3 (online color at: www.ann-phys.org) The nonlinear ring
function φ(x), which determines the contribution of screening
to the pressure (blue line). Further we show the nonlinear ladder
function A(x) (red line) which determines the contribution of the
bound states to the pressure as well as the linear approximation,
which gives only the lowest order to the second virial coefficient
(thin line).

easily solved. This way we find, after elimination of the
fugacity z (alternatively using the A-function):

z0 =n A(γ); A(x) = 1

2x
[
�

1+4x −1];

(57)

γ= 8πnλ3σBPL(T ).

We note the following series expansion and large x
asymptotic of the nonlinear function A(x):

A(x) = 1−x +2x2 −·· · ; A(x)= 1�
x
+·· · . (58)

The saturating behavior of the nonlinear function A(x) in
comparison to its linear approximation is shown in Fig. 3.
This shows that in the region of large partition functions
the fugacities disappear as

z0 = 1
√

8πnλ3σBPL(T )
. (59)
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This is important for the understanding, why the fugacity
series has, in the region of bound states, a better conver-
gence than the density series. The better convergence is
due to the fact that the fugacities disappear in the region
where the bound state contribution is large.
Introducing the zeroth step of iteration z0 into the pres-
sure we find

βp0 = z0 + (z0+8πz2λ3σBPL(T ))

= z0 +n =n(1+ A(γ)). (60)

This surprising representation tells us that the Saha func-
tion A(x) appears in the pressure in a quite natural way
through the fugacity expansion. We have introduced el-
ements of the chemical picture without using the no-
tation of chemical species explicitely. The new "semi-
chemical representation" includes the nonlinear func-
tion A(γ) which saturates at large densities (see Fig. 3).
The new representation contains all terms in the density
up to n2 as well as several higher order terms in the den-
sity contained in the nonlinear A(γ) which is related to
the Saha function defined by Eq. (4). We need this kind of
functions to reproduce an ideal Saha-type behavior. The
fugacity series contains more terms than the density se-
ries, so we may expect that some of the difficulties con-
nected with density expansions, as the strong decrease of
the pressure with increasing density shown in Fig. 2 may
be avoided. Indeed, a representation of the curve corre-
sponding to Eq. (42) shows a more reasonable behavior
with increasing density which is much closer to the Saha-
type behavior. As the curves shown in Fig. 2 demonstrate,
the pressure according to the fugacity expansion goes to
saturation. This is due to the fact that the fugacity is not
fixed, it decreases with increasing value of the partition
function and this way limits the growth. Evidently the fu-
gacity expansions provide a more correct description of
the bound state contributions as demonstrated in Fig. 2.

We find that density as well as fugacity expansions
have both advantages as well as disadvantages:
1) The density expansion describes well the screening ef-
fects but it fails to cope with the diverging contributions
from the screening terms and from the BPL-partition
function.
2) The fugacity expansion corresponds to an infinite den-
sity series including the partition function σ. If σ is large,
then the fugacity goes to zero what guarantees even at
large densities always finite contributions to the pressure.
This is true for the screening contributions and for the
bound state contributions; any strong increase of contri-
butions suppresses the fugacities. In general, the fugacity
expansions are more smooth.

In conclusion we may expect that the best representa-
tion is obtained by extended density expansions which
contain additional contributions corresponding to the
important damping terms in the fugacity expansions. We
may expect that this procedure provides Saha-like terms.
This kind of mixed expansions combines the positive
features of both expansions avoiding the negative fea-
tures. In order to demonstrate this we started here from
the density expansions and used the fugacity expansions
mostly only for finding the right continuation of the in-
finite series with respect to the γ- parameter and the κλ

parameter.
Following this line and including all terms up to

known orders in the densities and fugacities, we obtain,
in a first step, the following expression for the fugacities

z =na′;
(61)

a′ = A
(
8πnλ3 exp[−βe2κG(κλ)]σBPL(T )

)
.

Note that here the second term plays the role of an effec-
tive density of the bound particles. For the pressure we
find, including again the full electronic Fermi pressure,
the following relatively simple formula which contains
the three nonlinear functions which we discussed in the
foregoing part

βp = pF
e +n A(Γ)− κ′3/2

24π
φ(κ′λ), (62)

with the definitions of renormalized values of the Saha
parameter and the screening parameter

Γ= 8πnλ3 exp[−βe2κG(κ′λ)]σBPL(T );
(63)

κ′ = κA1/2(γ).

This provides us with a closed and relatively simple for-
mula for the pressure, including the Fermi pressure. The
underlying assumption is that all electrons contribute to
the Fermi pressure. This result for the pressure according
to the combined density-fugacity representation Eq. (62)
which includes all contributions up to second order in
the fugacity is, for three temperatures, shown in Fig. 4.

The good convergence of the new expression includ-
ing the nonlinear functions A(x) and φ(x) based on the
fugacity series is explained by the fact that the fugaci-
ties of the electrons and the protons are rather small in
the bound state region. We notice again that this result
comes from an extension of the density expansion in-
cluding all quadratic terms from the fugacity virial ex-
pansions and the full Fermi pressure of the electrons. We
see that the overall behavior of the new representation
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is much better than that of pure density or pure fugacity
representations. This way we may conclude that the most
appropriate description of Coulomb systems is by den-
sity expansions and including some elements from the
fugacity expansions. The physics behind is that the fugac-
ity expansions describe well the saturable forces between
bound states in Coulomb systems, but on the other hand
the additive long range Coulomb forces and the screen-
ing effects are better represented by density series.

We note that the new theory based on Eqs. (62), (63)
is consistent with the Saha theory and in particular also
with the Saha-Debye-Hückel theory [13]. Comparing the
curves based on the extended theory, Figs. 4 and 5 with
Fig. 2, we see that the overall behavior of the new ex-
tended density representations is much better than that
of pure density or pure fugacity representations. Further
we may state that the new extended analytical theory is,
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Figure 4 (online color at: www.ann-phys.org) Equation of state
(EOS) calculated from an extended density representation includ-
ing the nonlinear ring and ladder functionsφ(x), A(x) and includ-
ing the Fermi pressure of the electrons. We show the pressure re-
lated to the classical ideal pressure 2nkB T at constant tempera-
tures T = 20000, 30000, 50000 K in dependence on the density
(in log scale). For the temperature T = 20000 K (lowest, green
line) we give a comparison with an earlier calculated curve based
on the chemical picture and and Padé approximations [19, 21, 22].
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Figure 5 (online color at: www.ann-phys.org) Comparison of the
analytical theory for T = 20000 K (magenta) and T = 50000 K
(green) to the results of a numerical code developed earlier within
the chemical picture [21,22,24,51,53] (blue:T = 20000 K, red:T =
50000 K). We show the relation of the pressure to the classical
ideal pressure of the ions nkB T . The largest deviations between
the curves for 20000 K are due to the formation of H2 molecules
(deepminimum in theblue curve)whicharenot taken into account
in the present analytical theory.

up to the density n � 1021 cm−3, in quite good agreement
with earlier calculations based an the chemical picture
and quite complex numerical codes [19, 21, 22, 24, 51]

Note however that the agreement is based on a com-
plete agreement in the lowest orders in the density, in
higher orders several differences appear. Beside the good
agreement with the Saha theory and in particular with
the extended Saha-Debye-Hückel theory developed in
[13] we list the following deviations:
1. The exponent exp(βI ) in the Saha equation is replaced
by the BPL-partition function in the quantum-statistical
formula Eq. (62).
2. The linear first Debye-Hückel screening function lin-
ear in κ is replaced here by a nonlinear ring function φ(x)
describing the quantum statistical ring sums in the grand
canonical expansion in a good approximation.
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3. The linear second virial coefficient is replaced by a non-
linear ladder function stemming from the representation
in the grand ensemble.

We note that the grand canonical ensemble plays an
essential role in our derivation, and further we note that
the formula Eq. (62) corresponding to a second iteration
is in some sense incomplete, e.g we would expect that
in higher iterations more κ-terms are replaced and that
more terms corresponding to a mass-action law will ap-
pear.
We underline that several of the terms beyond n2 and
z2 are based on extrapolations which still need further
confirmations. However in the region of low tempera-
ture T < I /kB and non-degenerate plasmas our rather
simple formulae give a rather good behavior and de-
scribe well the transition from low density to the valley of
bound states. We note however that several physical ef-
fects as e.g. plasma phase transitions [13, 19] are not yet
described by the present approach. Evidently this effect
appears only in higher order terms or after transition to
some chemical picture [13, 19]. However this is not our
aim here.

In order to describe the transition to full ionization
in the degenerate region as well, additional effects have
to be taken into account, in particular the symmetry
between electrons and protons is lost. The disappear-
ance of the bound states with increasing density was dis-
cussed in [40, 41]; for more information see [14, 36].

5 Discussion and conclusion

It is shown in this work that transitions from full to partial
ionization in the temperature range 104–105 K which are
due to the formation of H-atoms, are well described in
the physical picture. Ring and ladder diagrams in higher
order approximations as well as certain combinations of
these basic diagrams are taken into account. In particular
the divergence of the partition function of the Bohr atom
and the state of art concerning this problem is discussed.

Formally the divergence of all partition functions
within the frame of the Rutherford model is due to the
infinite range of the Coulomb potential. Practically, a di-
vergent partition function means that ionization is im-
possible, atoms are absolutely stable. As stated already
by pioneers like Herzfeld, Fermi, Planck and others, this
makes no sense and there should be physical reasons
which make the atomic partition function finite. Among
the physical effects leading to a cut of the partition func-
tion at some level, which were mentioned already by the
pioneers, are:

(i) The high levels |Es | < kB T are not stable against col-
lisions in a thermal system and are strongly perturbed
by screening effects, this is represented by the BPL reduc-
tion.
(ii) At higher densities and moderate temperatures, the
contribution of the partition function provided by the
ladder contributions strongly increases, also the nonide-
ality strongly increases. The total contribution of screen-
ing and bound states remains however finite since the
fugacities of the charges become small. The nonideality
contributions saturate and lead to a reduction of the pres-
sure to about one half of the ideal pressure (see Fig. 4).
(iii) At very high densities beyond 1023 cm−3 the electron
degeneracy delocalizes the electrons and makes atoms
obsolete. The nonideality decreases again, the plasma
leaves the region of nonideality (screening and bound
states).

The principal scheme how the formation of bound
states depends on the density at a fixed temperature is
shown in Figs. 5 and 6. In Fig. 5 a comparison of the the-
ory given here for T = 20000 K, T = 50000 K with the
numerical results obtained within an advanced chem-
ical picture by minimization of the free energy is pre-
sented. With the chemical picture we mean here a de-
scription which starts from an expression for the free
energy depending on the density of free charges, atoms
and molecules. One can see that the overall agreement
is quite reasonable, the deviations increase only at large
densities beyond n � 1021 cm−3. The largest deviations
appear near the minimum of the relative pressure for hy-
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Figure 6 Typical isotherms of the degree of ionization at dissocia-
tion of hydrogen forT = 20000K in awidedensity rangebasedon
the codedevelopedearlierwithin the chemical picture [21,22,24,51].
We show the degree of ionization (upper curve) and the degree of
protons bound in H2 molecules (transientmaximum) as a function
of density in log-scale.
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drogen at 20000 K and may be interpreted by the forma-
tion of molecules which were not taken into account in
the present work. These interpretations are supported by
the the last Fig. 6. Here we show the degrees of ioniza-
tion and the degree of molecular bound states obtained
within the chemical picture for T = 20000 K. The com-
position and state of the system was obtained by mini-
mization of the free energy. The numerical results used in
Figs. 5 and 6 for comparison were obtained with a code
developed in some earlier work [24, 30, 40].

Looking at the pressure curve in Fig. 5 one observes as
in earlier sections first a decrease corresponding to the
formation of bound states (atoms and molecules). This
decrease comes to saturation and we observe a valley
of developed bound states. With increasing density the
spatial occupation of the atoms and molecules as well
as effects of electronic degeneracy come into play and
the bound states are destroyed. The largest deviations
between the curves for 20 000 K are due to the forma-
tion of H2 molecules (deep minimum in the blue curve)
which are not taken into account in the present analyt-
ical theory and also effects of strong degeneracy. These
rather complicated effects are not discussed here. Paral-
lel to the destruction of the bound states we observe an
increase of the relative pressure in the region of rather
high densities n > 1022 cm−3. The monotonic increase
of the relative pressure may be interrupted at tempera-
tures below 10000 K by a small wiggle. This is not an ar-
tifact. A rather flat region of the pressure in dependence
on the densities is contained. At lower temperatures the
wiggle may be even stronger and should be discussed in
connection with the possible existence of plasma phase
transitions [13,19–22,29,51]. Recent work in this area was
reported in [54, 55] and found a phase transition. This is
not our topic here, the purpose of the present work is to
consider the region of lower densities and higher temper-
atures. Our aim is, to obtain similar results as shown in
Fig. 5 without referring to the rather complex chemical
description based on atoms and molecules and their in-
teractions. Instead of the many assumptions contained
in any chemical description, the calculations given here
are based only on Rutherfords model of point charges
and Coulomb interactions as well as on the exact princi-
ples of quantum statistics. No a priori knowledge about
the properties of atoms and molecules is required. The
price to pay is that we have to avoid the regions where
these species are dominant. With respect to accuracy
the rather simple formulae given here may not compete
with the recent successful approaches to dense plasmas
based on numerical methods [52–54]. We are convinced
however, that in particular to experimentalists, analyti-
cal approaches may always be quite useful in comple-

menting numerical results. In conclusion, we first ana-
lyzed the basic results for the quantum statistics of the
Rutherford model of matter, partially in the historical
context starting with the work of Bohr, Herzfeld, Saha,
Planck, and Brillouin. Then we discussed the essential
results of quantum statistics since the 60th of the 20th
century. The main new results obtained in this work are:
For hydrogen plasmas at lower density the EOS within
the physical picture was obtained using a combined den-
sity fugacity representation which contains the essen-
tial contributions describing Saha effects and nonideality.
The good convergence of the fugacity series is explained
by the fact that the fugacities of the electrons and the
protons are rather small in the bound state region. The
obtained new expression for the EOS is valid for non-
degenerate plasmas and temperatures between 20000 K
and 100000 K. Partial ionization, i.e., the appearance of
atoms, is restricted to a valley in the density-temperature
plane. There is a transition from below starting in the re-
gion of nondegenerate electrons and a transition from
above beginning in the region of degenerate electrons.
Both transitions are connected to different physical ef-
fects.

It has been shown that in the non-degenerate region,
the most essential effects is the BPL-reduction, resulting
in the combined action of collisions and screening by
absorbing the orders in e2,e4 and the compensation ef-
fects of the states below and above the series limit. The
most essential new contributions given here are the non-
linear ring and ladder functions introduced into the EOS.
These terms stemming essentially from the grand canon-
ical representations are responsible for a good represen-
tation of the EOS in a wide range of densities and temper-
atures which essentially covers the range 20000 K < T <
100000 K and n < 1022 cm−3. As shown in [41] at high den-
sity the Pauli-Fock contributions are essential for the lim-
itation of the number of energy levels and determine the
transition from full ionization at very high densities to
partial ionization. For a detailed discussion of this prob-
lem see, e.g., [14, 36].
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